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NONLINEAR OSCILLATORS

Introduction. It is—for a reason evident already in Figure 1 of Chapter 3
—only in the small amplitude approximation that a one-dimensional system
trapped in the neighborhood of a point of stable equilibrium can be expected to
approximate a “simple harmonic oscillator.” Injection of energy into such a
system increases the amplitude of its oscillations,1 causing the particle to begin
to explore regions where the force law differs from that of an idealized spring.
From

U(x) = 1
2kx2 + 1

3u2x
3 + 1

4u3x
4 + 1

5u4x
5 + 1

6u5x
6 + · · ·

we obtain
F (x) = −kx − u2x

2 − u3x
3 − u4x

4 − u5x
5 · · ·

and it is to a study of the physical implications of the red terms—terms that
acquire significance only at relatively high energy/amplitude—that we now
turn. Such terms introduce nonlinearity into the equations of motion, so we
will be looking into the theory of nonlinear oscillators. We anticipate that the
theory, in at least some of its aspects, will prove to be relatively difficult—that
on occasion we will have to bring into play some of the methods of perturbation
theory and to rest content with results that are only approximately accurate—
for nonlinearity deprives us of access to the linear mathematics which has
previously figured so importantly in our work. And we anticipate that numerical
methods will figure more prominently in our work than they have heretofore.

We begin by looking to some of the qualitative basics of the problem before
us.

1 Recall that for a simple oscillator

energy = 1
2k · (amplitude)2

For non-simple oscillators the energy/amplitude relation is, as will emerge, more
complicated, but it remains true that increased energy =⇒ increased amplitude.
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1. Qualitative basics. We expect low-order nonlinearities to assume importance
before those of higher order. In the simplest instance we have

U(x) = 1
2kx2 + 1

3u2x
3 giving F (x) = −kx − u2x

2

which the most striking feature (Figure 1) is the asymmetry of the potential,
which causes the non-harmonic part of the force to be directed always to the
left (if u2 > 0, and always to the right if u2 < 0). The situation is exposed
most clearly when one looks (Figure 2) to the contours which the equations

energy 1
2mp2 + U(x) = constant

inscribe on phase space. In constructing the figure I have set 1
2m = 1

2k = 1 and
1
3u2 = 1

4 .

More interesting in some ways is the quartic case

U(x) = 1
2kx2 + 1

4u3x
4 giving F (x) = −kx − u3x

3

(Bilaterally symmetric) scattering/escape are again features of the physics if
u3 < 0 (see Figures 3 & 4), but more commonly encountered are cases with
u3 > 0, for which all states are spatially confined/oscillatory (Figure 5).

It will be appreciated that the potentials discussed above are in their own
ways no less idealized that the harmonic potential U(x) = 1

2kx2, for they speak
of forces that become ever stronger as one ventures into regions increasingly
remote from the origin. Which—unless, perhaps, one is talking about “classical
quarks”—is unphysical. In real-world physics one expects at large amplitude to
have additional nonlinear corrections come into play, the net effect being that

lim
x→±∞

[
F (x) = −U ′(x)

]
= 0

Look, for example to the case of a simple pendulum. The potential is

U(θ) = mg�
[
1 − cos θ

]
: exactly

≈ mg�
[
1
2θ2] : in leading (harmonic) approximation

≈ mg�
[
1
2θ2 − 1

24θ4] : harmonic approximation + quartic correction

Figure 6 shows plainly that the quartic correction is useful only in a quite
restricted energy range, and that it grossly misrepresents the large amplitude
physics. Note also that in this instance U ′(θ) does not become asymptotically
flat —not too surprisingly, for θ refers not to linear separation but to an angle.
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Figure 1: Graph of the typical cubic potential U(x) = x2 + 1
4x3.

Shown in red, for purposes of comparison, is the harmonic potential
U(x) = x2. The cubic potential is extremal at x = 0 and x = − 8

3 .
At the “top of the hill” it has value U(− 8

3 ) = 64
27 . A particle with

energy E > 64
27 is not confined to the neighborhood of the origin, but

escapes to the left, traveling ever faster.

Figure 2: Implicit plot of E(p, x) = p2 +
[
x2 + 1

4x3
]
, inscribed

on the phase plane. The red contour arises from setting E = 64
27 .

Particles with energy E > 64
27 are scattered by the potential : they

approach from the left, loop around the origin, exit to the left.
Particles with energy E < 64

27 are of two types : those which approach
from the left and are scattered back to the left before they get to
the origin, and those which are trapped in the neighborhood of the
origin.
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Figure 3: Graph of the typical quartic potential U(x) = x2 − 1
4x4.

Shown in red, for purposes of comparison, is the harmonic potential
U(x) = x2. The quartic potential is extremal at x = 0 and x = ±

√
2.

At the “top of the hills” it has value U(±
√

2) = 1. Only particles
with energy E < 1 are confined to the neighborhood of the origin.

Figure 4: Implicit plot of E(p, x) = p2 +
[
x2 − 1

4x4
]
, inscribed

on the phase plane. The red contour arises from setting E = 1.
Particles with energy E > 1 approach from the left (right), do a
little jig near the origin, then continue to the right (left). Particles
with energy E < 1 are of two types : those which approach from the
left (right) and are scattered back to the left (right) before they get
to the origin, and those which are trapped in the neighborhood of
the origin.
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Figure 5: Graph of the typical quartic potential U(x) = x2 + 1
20x4.

Shown in red, for purposes of comparison, is the harmonic potential
U(x) = x2. In this case scattering does not occur : all orbits, however
great the energy of the particle, are symmetrically bounded on left
and right.

Figure 6: Shown in black is the exact pendulum potential U(θ), in
red the small amplitude harmonic approximation to that potential,
and in blue the harmonic potential with quartic correction. It is
evident (see again page 2) that inclusion of the quartic correction is
a useful refinement only if the amplitude/energy are not too large.

2. Nonlinearity implies anharmonicity. A mass point m moves within a potential
well, as shown above. From energy conservation 1

2mẋ2 + U(x) = E it follows
that the time dt required for the particle to move from x to x + dx can be
described

dt = dx√
2
m

[
E − U(x)

]
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E

a x0 x b

Figure 7: A mass point m moves with conserved energy E in the
presence of the potential indicated by the red curve. Its motion is
necessarily confined to the interval bounded by the turning points a
and b, for outside of that interval one would have

kinetic energy = 1
2m(speed)2 < 0

which would force the speed to be imaginary !

The time of flight (or “transit time”)

x0 −−−−−−−−−−−−→
energy E

x

is given therefore by

TE(x0 �−→ x) =
∫ x

x0

1√
2
m

[
E − U(y)

] dy

Such one-dimensional motion is necessarily periodic, with

period τE = 2TE(a �−→ b)

= 2
∫ b

a

1√
2
m

[
E − U(y)

] dy (1)

EXAMPLE: Harmonic potential. From the symmetry of the harmonic
potential U(x) = 1

2kx2 it follows that the turning points are
symmetrically placed, at (let us say) ±A. The energy is E = 1

2kA2,
so we have

τE = 2
∫ +A

−A

1√
k
m

[
A2 − y2

] dy

= 2
ω

∫ +1

−1

1√
1 − z2

dz with z ≡ y/A, ω ≡
√

k/m

= 2
ω

Arcsin(x)
∣∣∣+1

−1

= 2π/ω for all values of A
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This energy-independence of the period is a property special to the
harmonic oscillator, and is in fact the reason that such oscillators
are said to be “harmonic.”

Look to the dimensional analysis of the situation. From
U(x) = 1

2kxn we get [k] = M1L2−nT−2 so

τ = mpkqAr entails

{ p + q = 0
q(2 − n) + r = 0

−2q = 1

giving q = − 1
2 , p = + 1

2 , r = 1− 1
2n: τ will be amplitude independent

only in the case n = 1
2 .

EXAMPLE: General evenpower-law potential. Here the potential is
taken to have the form U(x) = 1

2kxn with n even (odd powers to not
produce potential wells, so play no role in the present discussion).
Arguing as before, we obtain

τA,n = 4√
k/mA

n
2 −1

∫ 1

0

1√
1 − zn

dz

The integrals lead, according to Mathematica, to ratios of gamma
functions:

τA,2 = 1√
k/mA0

2π·

τA,4 = 1√
k/mA1

2π · 0.834627

τA,6 = 1√
k/mA2

2π · 0.773064

...

τA,n = 1√
k/mA

n
2 −1

4
√

π
Γ (1 + 1

n )
Γ ( 1

2 + 1
n )

Heavy integration supplied the numerical details, but dimensional
analysis was by itself powerful enough to supply the rest.

3. Cubic perturbation. We are concerned with one-dimensional systems that in
the simplest instance2 possess equations of motion of the form

mẍ = −kx + ε(nonlinear terms)

In the preceding section we identified the condition that must prevail if the
motion x(t) of the oscillator is to be periodic: x(t) = x(t+τ). And we discovered

2 Later we will want to include terms that describe damping and harmonic
stimulation.
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how, in each individual periodic case, to compute the energy-dependent value
of τ . The more interesting physics lives, however, in the finer details, and
to glimpse those one must have in hand some representative solutions of the
equations of motion. Partial information about those can be obtained analytical
perturbation theory, but the computational detail tends to be so dense as to
obscure the qualitative essence of the physics.3 It is to avoid those tedious
distractions that I will make heavy use of Mathematica’s powerful numerical
capabilities.

We will concern ourselves here with systems of the type

U(x) = 1
2kx2 + 1

3mαx3

which yield
ẍ + ω2

0x + αx2 = 0 : ω2
0 ≡ k/m

To make a perturbation-theoretic approach feasible one would insist that α � 1,
but the numerical approach imposes no such restriction.4 In the case k = m = 2,
α = 3

8 we have U(x) = x2 + 1
4x3, the case to which Figures 1 & 2 refer. The

equation of motion becomes

ẍ + x + 3
8x2 = 0

We will restrict our attention to cases in which x(0) = 0. Were we to set

initial kinetic energy = potential energy at top of the hill

we would have ẋ(0) =
√

64/27 = 1.5396: the motion will be bounded/periodic
if 0 < ẋ(0) < 1.5396, but if ẋ(0) > 1.5396 the particle will escape over the top
of the potential hill at its first opportunity. Look now to Figure 8, which was
constructed

harmonic=x[t]/.

First[NDSolve[{x ′′[t]+x[t]==0, x[0]==0, x ′[0]==1.0},
x[t], {t, 0, 2π}]]

cubic050=x[t]/.

First[NDSolve[{x ′′[t]+x[t]+ 3
8x[t]2==0, x[0]==0, x ′[0]==0.55},

x[t], {t, 0, 2π}]]

3 See, for example, Chapter 7 in I. G. Main, Vibrations and waves in physics
(3rd edition 1993). One circumstance that complicates the analytical study of
nonlinear differential equations stems from the elementary fact that if z = x+iy
then

real part of (x + iy)n �= xn unless n = 1

The powerful “complex variable trick” is thus rendered inapplicable. And, of
course, we lose the principle of superposition, which is a grievous loss.

4 Note, however, that as α increases the potential well becomes ever
shallower, and the energy range that leads to periodic motion becomes ever
narrower.
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Figure 8: Motion of a mass m = 2 in the presence of the cubically
perturbed potential U(x) = x + 1

4x3 shown in Figure 1. The
initial velocities were taken to be ẋ(0) = 0.5, 1.0, 1.5 (all less that
the critical launch velocity ẋcritical)(0) = 1.5396) and ẋ(0) = 1.55.
In the latter (blue) instance the particle escapes. Notice that the
positive excursions become shorter as they become more energetic—
as one might anticipate on the basis of the discussion in §2. But
that trend is contradicted by the negative excursions, for the reason
that particles of greater energy approach nearer to the top of the hill,
where they move more slowly. The red curve shows typical motion
in the absence of the cubic term.

cubic100, cubic150 and cubic155 are constructed similarly. Finally we
command

Plot[Evaluate[{harmonic, cubid050m cubic100,cubic150,cubic155}],
{t, 0, 6π}, PlotRange→ {−4, 2}, Ticks→ False,

PlotStyle→ {{RGBColor[1,0,0],Thickness[0.006]},
{RGBColor[0,0,0],Thickness[0.005]},
{RGBColor[0,0,0],Thickness[0.005]},
{RGBColor[0,0,0],Thickness[0.005]},
{RGBColor[0,0,1],Thickness[0.006]}}];

Similar command sequences will be used to construct subsequent figures.

4. Upturned quartic perturbation. We turn now to systems of the type

U(x) = 1
2kx2 + 1

4mαx4 : α � 0

which yield
ẍ + ω2

0x + αx3 = 0

From the upturned symmetry U(x) = U(−x) of the potential it follows that the
motion of the particle is invariably bounded by symmetrically-placed turning
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Figure 9: Graphs that result from (2) when x(0) = 0 and the initial
velocity is assigned the values ẋ(0) = 1.5, 2.0, 2.5, 3.0. The red
curve is typical of those that result when the quartic perturbation
is turned off. Note that increasing the energy decreases the period,
consistently with our experience on page 7.

points ±A, periodic x(t + τA) = x(t), and that x(t + 1
2τA) = −x(t). If we set

m = k = 2 and α = 1
10 the potential becomes that depicted in Figure 5 and

the equation of motion becomes

ẍ + x + 1
10x3 = 0 (2)

Numerically-generated solutions are shown in the preceding figure.

PROBLEM 1: Construct the modified figure that would result from
introducing a linear damping term into (2):

ẍ + 2γẋ + x + 1
10x3 = 0

Set 2γ = 1
8 . And notice that, if we are going to abandon linearity

anyway, it might be reasonable to look into the consequences of the
nonlinear damping that would be achieved by inclusion of terms of
the form ẋodd power. The physically important and much-studied
Rayleigh-van der Pohl equation

ẍ + ω2
0 = ε(ẋ − 1

3 ẋ3)

provides and example.

The energy of such an oscillator (assuming that x(0) = 0) can be described

E = 1
2m[ẋ(0)]2 = 1

2kA2[1 + 1
2 α̃A2] : α̃ ≡ α/ω2

0 = mα/k

Returning with this information to (1) we obtain
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τA = 4
∫ A

0

1√
2
m

[
1
2kA2[1 + 1

2 α̃A2] − 1
2ky2[1 + 1

2 α̃y2]
] dy

= 4
ω0

∫ 1

0

1√
[1 + β ] − z2[1 + βz2]

dz : β ≡ 1
2 α̃A2

Using Series[integrand,{β, 0, 2}] to expand the integrand, then integrating
term-wise, we find

τA = 4
ω0

{
π
2
− 3π

8
β + 57π

128
β2 + · · ·

}
= τ0

{
1 − α̃3A2

8
+ α̃2 57A4

256
+ · · ·

}
: τ0 ≡ 2π/ω0

which—it is reassuring to observe—does assume the correct value at α = 0, and
does show the correct diminishing trend when α is small. By algebraic inversion

ωA ≡ 2π/τA

= ω0

{
1 + α 3

8 (A/ω0)2 − α2 21
256 (A/ω0)4 + · · ·

}
= ω0 + ω1 + ω2 + · · ·

(3)

It might appear on casual inspection that Figure 9 refers to functions of
the form x(t) = A sinωAt. But such functions clearly do not satisfy (2). We are
led therefore to contemplate solutions of the form5

x(t) = a1 sinωAt + a3 sin 3ωAt + a5 sin 5ωAt + · · · (4)

and to have A = a1 − a3 + a5 − a7 + · · ·. To lend detailed substance to those
anticipatory remarks one turns to perturbation theory.

Perturbation theories—whatever the context in which they are encountered
(celestial mechanics, quantum mechanics, . . . )—entail chains of calculation that
can invariably be organized in a variety of distinct ways, each with its own
advantages/disadvantages. A. H. Nayfeh & D. T. Mook, in their splendid
monograph,6 treat no fewer than four distinct variants of the perturbation

5 Even terms are excluded on the ground that their presence would violate
the requirement that the resulting curves be symmetrical with respect to their
extrema: compare the figures that result from

Plot[{Sin[t], Sin[3t, Sin[t]+ 1
10Sin[3t]}, {t,0,2π}];

and
Plot[{Sin[t], Sin[2t, Sin[t]+ 1

10Sin[2t]}, {t,0,2π}];

6 Nonlinear Oscillations (1979), §2.3, pages 50–61.
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theory of nonlinear one-dimensional oscillators. The following discussion is
based upon a method developed by A. Lindstedt & H. Poincaré.

4. Perturbation theory of an oscillator with quartic nonlinearity. To gain leverage
on the problem we in place of ẍ + ω2

0x + αx3 = 0 write

ẍ + ω2
0x + εαx3 = 0 (5)

which smoothly interpolates between the problem of interest (ε = 1) and its
linear companion (ε = 0). We have interest in periodic functions of

s ≡ ωt

so will write
x(t) = z(s) which entails ẍ(t) = ω2z ′′(s)

And—with the figure in mind—we declare ourselves to be interested only in
functions that conform to the initial condition x(0) = z(0) = 0.

The equation of motion now reads

ω2 · z ′′ + ω2
0z + εαz3 = 0

Into this we introduce

ω = ω0 + εω1 + ε2ω2 + · · ·
z = z0 + ε z1 + ε2z2 + · · ·

expand and set the terms of order ε0, of order ε1, of order ε2, . . . separately
equal to zero. This gives

ω2
0

[
z ′′

0 + z0

]
= 0 (6.0)

ω2
0

[
z ′′

1 + z1

]
= −2ω0ω1z

′′
0 − αz3

0 (6.1)

ω2
0

[
z ′′

2 + z2

]
= −2ω0ω1z

′′
1 − (ω2

1 + 2ω0ω2)z ′′
0 − 3αz2

0z1 (6.2)
...

which we undertake to solve serially. From (6.0) and our declared initial
condition (which will be enforced at each individual step of the procedure)
we have

z0(s) = A sin(s) (7.0)

Proceeding with that information to (6.1) we have

ω2
0

[
z ′′

1 + z1

]
= 2ω0ω1A sin s − αA3 sin3 s

which when solved (use DSolve) subject to the condition z(0) = 0 gives

z1(s) = C1 sin s + (six terms of the form cos ps sin qs)

+ s ·
[
12αA2 − 32ω0ω1

]
32ω2

0

a0 cos s︸ ︷︷ ︸
“secular term”
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Here C1 is a constant of integration which we set equal to zero on the grounds
that it would otherwise bring into play a term redundant with z0(s). The
so-called secular term , if allowed to remain, would violate periodicity : to kill it
we set

ω1 = αω0
3
8 (A/ω0)2 (8.1)

Next we use (8.1) to eliminate all reference to ω1 and, proceeding one term
at a time, we TrigReduce each of the cos ps sin qs terms (this is accomplished
by highlighting such a term and then hitting the TrigReduce button on the
AlgebraicManipulation palette). Grouping similar terms, we obtain finally

z1(s) = −αA(A/ω0)2
[

1
32 sin s + 1

32 sin 3s
]

(7.1)

which, as we readily verify, is in fact a particular solution of (6.1).

Next we introduce (7.1), (8.1) and (7.2) into (6.2) and proceed exactly as
before: we set the new constant of integration equal to zero (for the same reason
as before) and to kill the

new secular term = −s · 2A[21α2A4 + 256ω3
0ω2]

512ω4
0

cos s

we set
ω2 = −α2ω0

21
512 (A/ω0)4 (8.2)

Thus are we led finally (after the familiar TrigReduce procedure) to

z2(s) = α2A(A/ω0)4
[

21
1024 sin s + 3

128 sin 3s + 1
1024 sin 5s

]
(7.2)

which, as we readily verify, is in fact a particular solution of (6.2).

We now set ε—which has done its work—equal to unity7 and have

x(t) = A
{

sin(ωt) − α(A/ω0)2
[

1
32 sinωt + 1

32 sin 3ωt
]

+ α2(A/ω0)4
[

21
1024 sinωt + 3

128 sin 3ωt + 1
1024 sin 5ωt

]
+ · · ·

} (9.1)

with
ω = ω0

[
1 + α 3

8 (A/ω0)2 − α2 21
512 (A/ω0)4 + · · ·

]
(9.2)

The latter equation is, is will be noticed, in precise agreement with (3), which
was derived by other means. Or would be if we could identify A with the

7 Our results remain valid/useful when looked upon as expansions in powers
of the small parameter α. If the quartic adjustment of our harmonic potential
were in fact not “weak,” if it were too large to be treated as a “perturbation,”
then we would have to adopt an altogether different (numerical?) mode of
analysis.
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amplitude A. Equation (9.1) describes, however a periodic function with

amplitude A = x
(

π
2

)
= A

[
1 − α2 1

512 (A/ω0)4 + · · ·
]

Returning with this information—note the absence of a term of order α1—to
(3) we recover (9.2), which is to say: (3) and (9.2) are in precise agreement
through terms of second order in α, which is all the agreement we can ask for,
since that is the order in which we have been working.

How well have we done? If we assign to m, k, ω0 and α the values
(m = k = 2, ω0 = 1, α = 1

10 ) that were used to construct Figure 9 then
(9.1) becomes

x(t) = A
{

sin(t) − 1
10A2

[
1
32 sin t + 1

32 sin 3t
]

+ 1
100A4

[
21

1024 sin t + 3
128 sin 3t + 1

1024 sin 5t
]
+ · · ·

}
And if we assign to A the values 1.42884, 1.84835, 2.23607 and 2.59484 that by

ẋ(0) =
√

2
m

[
1
2kA2 + 1

4mαA4
]

correspond to ẋ(0) = 1.5, 2.0, 2.5 and 3.0, and if
finally we superimpose graphs of the resulting functions x(t) upon a duplicate
of Figure 9, we obtain Figure 10, the seeming implication being that we have
done very well indeed!

Figure10: Superimposed here upon a red and blue copy of Figure 9
—which was produced by numerical analysis—are graphs of the
corresponding of the instances of the x(t)of (9.1), whichwas obtained
by 2nd order perturbation theory.

Perturbation theory—here as always, whatever the field of application—is
invariably computationally challenging, if carried to higher than leading order.
But the computations are of a sort that can readily delegated to Mathematica,
and that could be accomplished effortlessly by special purpose program if one
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were motivated (which one seldom is) to carry the work to 3rd, 4th or higher
order. That is a lesson of general significance, but the insight gained from our
effort is mainly qualitative:

• Nonlinearity tends generally to cause period/frequency to become energy/
amplitude-dependent (but this is a lesson learned already in §2);

• Aperiodic “secular terms” were found to arise at every order, and it was
our effort to kill those terms (to restore periodicity) that supplied the
information we used to construct a description of how frequency depends
upon amplitude (but it was remarked already in §2 that the time-of-flight
formula (1) provides a much more general and direct approach to the
solution of that problem);

• Perturbation theory has supported the conjecture introduced at (4). We
found more specifically that

a sin 3ωt-term (+ an additional sinωt-term) was introduced
in 1st order

We anticipate that
a sin 5ωt-term (+ additional sinωt and sin 3ωt-terms) will
be introduced in 2st order

and expect that pattern to continue.
• We recognize that those odd harmonics—which are reminiscent of the

harmonics of an organ pipe that is open on one end—originated in these
simple trigonometric identities

TrigReduce[cos 2s · sin s] = 1
2

{
− sin s + sin 3s

}
TrigReduce[cos s · sin 2s] = 1

2

{
+ sin s + sin 3s

}
TrigReduce[cos s · sin 4s] = 1

2

{
+ sin 3s + sin 5s

}
TrigReduce[cos2 2s · sin s] = 1

4

{
+ 2 sin s − sin 3s + sin 5s

}
...

and that the products on the left stem from the nonlinearity of the equation
of motion.

5. Resonances of a forced nonlinear oscillator. We have been looking to the
perturbation-theoretic solution of the equation of motion

ẍ + ω2
0x + εαx3 = 0 (5)

of what—somewhat confusingly—I have called “oscillators with weak quartic
nonlinearity.” Confusingly because, while a quartic does appear in the potential

U(x) = 1
2mω2

0x2 + ε 1
4mαx4

it contributes a cubic to the equation of motion. The time has come, I think, to
assign to (5) the name by which it is commonly known: (5) was first discussed
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by G. Duffing (1918), and has been intensively studied—partly because it arises
from the lowest-order nonlinear term in the expansion of the functions U(x) that
refer to symmetric potential wells, partily because it serves so well to illustrate
the properties of nonlinear oscillators in general , partly because some of its
solutions have been discovered to illustrate phenomena basic to the modern
theory of chaos. It is called the Duffing equation.

The occurance of harmonics in the solutions of (5) suggests that the
oscillator might be especially responsive not only to stimuli of frequency ν ∼ ω0

but also to stimuli of frequencies ν ∼ 3ω0, 5ω0, . . . I turn now to description of
an argument that lends analytical support to that conjecture.

PROBLEM 2: a) Plot the numerical solution of (10) that arises in
the case ω0 = 1, ν = 1.2, 2γ = 1

10 , α = 1
30 , x(0) = ẋ(0) = 0 as

t ranges from 0 to 200. Set PlotRange→{−6, 6} and MaxBend→1.
What do you conclude? Construct—for your own edification—
similar graphs for assorted values of ν, 2γ and α.
b) Do the same for 150 < t < 200 and call that graph response.
Plot sin(1.2t) for 150 < t < 200 (with PlotRange set as before) and
call that graph stimulus. Show[{stimulus, response}]. What
do you conclude?

Experiments such as those just performed establish to our satisfaction that—
after transcients have died down, and all initial data has been forgotten—
harmonically stimulated nonlinear oscillators (just like linear oscillators) move
not at their natural frequencies, but in phase-shifted synchrony with the stimulus.
It is upon this proposition that we will build.

Having concerned ourselves previously with the homogeneous equation (5),
we look now to the inhomogeneous equation of motion

ẍ + ω2x + ε(αx3 + 2γẋ) = S sin(νt + δ)
= S cos δ · sin νt + S sin δ · cos νt

≡ S1 sin νt + S2 cos νt (10)

Here ε is a bookkeeping device intended to emphasize that we consider both
the nonlinearity and the damping to be small, and to enable us to distinguish
1st-order from 2nd-order from 3rd-order . . . effects: we will, in point of fact, be
working only in 1st-order, and at the end of the day will set ε = 1 on grounds
that it is really α and γ that are small. In the present context the 0 on ω0

serves no purpose, so will be dropped. The literature records many attempted
solutions8 of (10), but all proceed

8 See, for example, A. H. Nayfeh & D. T. Mook, Nonlinear Oscillations
(1979), §4.1; A. H. Nayfeh, Introduction to Perturbation Techniques (1981),
Chapter 9; J. J. Stoker, Nonlinear Vibrations in Mechanical &Electrical Systems
(1950), Chapter 4; C. Hayashi, Nonlinear Oscillations in Physical Systems
(1964); J. V. José & E. J. Salatan, Classical Mechanics(1998), §7.1.2.
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stimulus −→ response

and all, as I read them, either are marred by seemingly unmotivated leaps and
arbitrary assumptions or are offputtingly complicated. I have discovered that
it is very much easier and less problematic to proceed

stimulus ←− response

—very much in the spirit of PROBLEM 9 in Chapter 3. We ask for the conditions
under which the response

x(t) = A sin νt + εB sin 3νt + ε2C sin 5νt + · · · (11)

can be demonstrated to arise from a stimulus of the form S(t) = S sin(νt + δ).

Introducing (11) into the expression on the left side of (10) we obtain (in
first order)

A(ω2 − ν2) sin νt + ε
[
2Aγν cos νt + B(ω2 − 9ν2) + A3α sin3 νt

]
+ · · ·

But sin3 νt = 3
4 sin νt − 1

4 sin 3νt so the preceding expression becomes{
A(ω2−ν2)+ε 3

4A3α
}

sin νt+ε2Aγν cos νt+ε
{
B(ω2−9ν2)− 1

4A3α
}

sin 3νt+· · ·

We force this to resemble the expression on the right side of (10) by setting

B = A3α
4(ω2 − 9ν2)

S1 = A(ω2 − ν2) + ε 3
4A3α

S2 = ε2Aγν

The net implication (if at this point we set ε = 1) is that the response

x(t) = A sin νt + A3α
4(ω2 − 9ν2)

sin 3νt + · · · (12)

arises in first order from the stimulus

S(t) = S sin(νt + δ)

where

S = A

√[
(ω2 − ν2) + 3

4A2α
]2 +

[
2γν

]2 (13.1)

δ = arctan
[

2γν

(ω2 − ν2) + 3
4A2α

]
(13.2)

From (13.1) we obtain

A = S√[
(ω2 − ν2) + 3

4A2α
]2 +

[
2γν

]2 (14)
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Squaring and multiplying by the denominator, we have

S2 −
[
(ω2 − ν2)2 + 4γ2ν2

]
A2 − 3

2α(ω2 − ν2)A4 − 9
4α2A6 = 0

which—if we consider the stimulus amplitude S to be given/fixed, and
{
ω, γ, α

}
to describe given/fixed properties of the damped nonlinear oscillator—presents
A(ν) as the root of cubic polynomial in A2. Such a polynomial—since the
coefficients are real—necessarily has either

• three real (but not necessarily distinct) roots, or

• one real root and two complex roots (that are conjugates of one another).

We infer that A(ν) may—at some frequencies ν and for some parameter settings
—be triple valued. The point is illustrated in Figure 11.

The multivaluedness of A(ν) accounts (see Figure 12) for an instance of
the jump discontinuities that are a commonly encountered symptom of
nonlinearity. If the stimulus frequency ν is dithered up and down through
an interval that includes both νlow and νhigh then one can expect to see A(ν)
trace a hysteresis loop. T. W. Arnold & W. Case have described9 a simple
mechanical apparatus that serves to illustrate these and other characteristic
consequences of nonlinearity. More commonly encountered—in both literature
and laboratory—are electrical circuits that demonstrate the effects of
nonlinearity.

The preceding discussion refers to the effect of nonlinearity upon the
primary resonance ν ∼ ω of a Duffing oscillator. Similar remarks are shown
in sources already cited8 to pertain to the superharmonic resonances
ν ∼ 3ω, 5ω, 7ω, . . .

It has become conventional to call A(ν) the “amplitude” of the response
function x(t), though it is obvious that to discover the true maximum of

x(t) = A(ν) sin νt + εB(ν) sin 3νt + ε2C(ν) sin 5νt + · · ·

one would have to take the contribution of the higher-order terms also into
account. Far from being negligible, that contribution can be dominant. We
learned, for example at (12) that in 1st-order theory

B(ν) =
A3(ν)α

4(ω2 − 9ν2)

which blows up at ν = 1
3 ω. A more refined analysis would establish the existence

and develop properties of the subharmonic resonances ν ∼ 1
3 ω, 1

5 ω, 1
7 ω, . . .

For an accessible account of the details, see pages 104–112 in Stoker.8

9 “Nonlinear effects in a simple mechanical system, ” AJP 50, 220 (1982).
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1

Figure 11: Illustration of the fact that harmonic stimulation of a
Duffing oscillator leads to a response-amplitude function A(ν) that
is sometimes triple valued. The figure displays A2 vs. ν2, and was
obtained from from (14) by means of Mathematica’s ImplicitPlot
resource. Parameters have been assigned the values S = ω = 3

4α = 1,
ant the slanted peaks have become progressively taller as the damping
term 4γ2 descends through the values 0.4, 0.3, 0.2, 0.1. Shown in red
for purposes of comparison is the amplitude function that results at
4γ2 = 0.1 when the nonlinearity has been turned off : α = 0.

Figure 12: If the stimulation frequency ν is slowly increased, with
other parameters held constant, one comes to a point νhigh at which
A(ν) abruptly jumps (red curve) to a smaller value. If, on the other
hand, ν is slowly decreased one comes to a different/lower point
νlow at which A(ν) abruptly jumps (blue curve) to a higher value.
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6. Combination resonances for two-frequency stimulation. Qualitatively new
aspects of nonlinear oscillator physics come into evidence when the stimulus
contains more thana one frequency component. To illustrate some of hte points
at issue we look to the system (compare (10))

ẍ + ω2x + ε(αx3 + 2γẋ) = S1 sin(ν1t) + S2 sin(ν2t + δ)

We insert x = x0 + εx1 + ε2x2 · · · into the preceding equation, expand in powers
of ε, group together terms of the same order and obtain

ẍ0 + ω2x0 = S1 sin(ν1t) + S2 sin(ν2t + δ) (11.0)
ẍ1 + ω2x1 = −2γẋ0 − αx3

0 (11.1)
ẍ2 + ω2x2 = −2γẋ1 − 3αx2

0x1 (11.2)

The general solution of (11.0) is reported by Mathematica to be

x0(t) = A sin(ωt + β) + S1

ω2 − ν2
1

sin ν1t + S2

ω2 − ν2
2

sin(ν2t + δ) (12.0)

where A and β are arbitrary constants. From this it follows that

TrigReduce[ 2γẋ0 + αx3
0 ]//Simplify = sum of 31 trigonometric terms

The solution of (11.1) is therefore challenging, but can with patience be done
term by term. The result (after another TrigReduce[ ]//Simplify) is found
to be of the form

x1(t) = sum of 37 terms

But four of those terms (of which 4Aγ t sin[ωt + β ] is typical) are aperiodic
secular terms: to kill them we must set A = 0, which serves to kill most of the
periodic terms as well. We are left with

x1(t) = B sin[ωt + β ] − 2S1γν1

(ω2 − ν2
1)2

cos[ν1t] − 2S2γν1

(ω2 − ν2
2)2

cos[ν2t + δ ]

+
3S3

1α

4(ω2 − ν2
1)4

sin[ν1t] +
3S3

2α

4(ω2 − ν2
2)4

sin[ν2t + δ ]

+
3S1S

2
2α

2(ω2 − ν2
1)2(ω2 − ν2

2)2
sin[ν1t] +

3S2
1S2α

2(ω2 − ν2
1)2(ω2 − ν2

2)2
sin[ν2t + δ ]

− S3
1α

4(ω2 − 9ν2
1)(ω2 − ν2

1)3
sin[3ν1t] −

S3
2α

4(ω2 − 9ν2
2)(ω2 − ν2

2)3
sin[3(ν2t + δ)]

− 3S2
1S2α

4(ω2 − ν2
1)2(ω2 − ν2

2)(ω2 − [2ν1 + ν2]2)
sin[(2ν1 + ν2)t + δ ]

− 3S1S
2
2α

4(ω2 − ν2
1)(ω2 − ν2

2)2(ω2 − [ν1 + 2ν2]2)
sin[(ν1 + 2ν2)t + 2δ ]

− 3S2
1S2α

4(ω2 − ν2
1)2(ω2 − ν2

2)(ω2 − [2ν1 − ν2]2)
sin[(2ν1 − ν2)t − δ ]

− 3S1S
2
2α

4(ω2 − ν2
1)(ω2 − ν2

2)2(ω2 − [ν1 − 2ν2]2)
sin[(ν1 − 2ν2)t − 2δ ] (12.1)

where it is now B and β that are arbitrary. Using (12) to construct x = x0+εx1,
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we observe that the system is

• resonant if either ν1 ∼ ω or ν2 ∼ ω;

• resonant if either ν1 ∼ 1
3ω or ν2 ∼ 1

3ω;

• resonant if either |2ν1 + ν2| ∼ ω or |2ν1 − ν2| ∼ ω or |ν1 + 2ν2| ∼ ω or
|ν1 − 2ν2| ∼ ω.

Resonances of the latter sort are called combination resonances.

In acoustics, combination resonances—especially those of the |ν1 ± ν2|
variety—are called combination tones (or “third tones”). Hermann Helmholtz
(1821–1894), who devotes Chapter 7 of his monumental On the Sensations
of Tone (1st edition 1862, 4th edition 1877) to the subject, states that the
phenomenon and its fundamental importance to the perception of musical
harmony was first recognized (1714) by Giuseppe Tartini, the Italian violinist
and composer (1692–1770), and later stressed (1745) by the German organist
and theorist Georg Andreas Sorge (1703–1778). From his Appendix 12 it
becomes clear that Helmnoltz understood quite clearly that the perception of
combination tones originates in the circumstance that in the presence of loud
sounds the ear functions like a nonlinear oscillator:10 he presents there a sketch
of the essentials of precisely the argument that led us to equations (12).

At the beginning of his research career Chandrasekhar Raman
(1888–1970), working under the influence of Helmholtz’ and Rayleigh’s then-
recent but already highly influential contributions to the theory of sound,
cultivated an interest in the vibrational physics of musical instruments. Among
the systems that engaged his attention11 is the one shown in Figure 13. He
was fascinated by the complex vibrational patterns (combinational resonances)
that arose when the forks were tuned to distinct frequencies. It would be easy to
argue that it was this experience that prepared his mind for the discovery—only
a few years later—of Raman scattering/Raman spectroscopy.12

Figure 13: C. V. Raman’s experimental set-up. Forks tuned to
distinct frequencies stimulated the respective ends of a non-linear
string. Stroboscopic examination revealed “combination resonances.”

10 My own ears are apparently more nonlinear than most: when presented
with the sound of a tuning for, I hear chords. I have not attempted to determine
whether the spurious frequencies conform to the pattern developed in §5.

11 My source here is G. Venkataraman, Journey into Light : Life & Science of
C. V. Raman (1988). See especially Chapter 4, pages 75–78.

12 For a good short account of that subject, see http://carbon.cudenver.edu/
public/chemistry/classes/chem4538/raman.htm.
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It will be appreciated that the phenomenon under discussion hinges
critically on the nonlinearity of the equation of motion. If one sets α = 0 then
(12) reduces to the statement that

x(t) = B sin(ωt + β ) +
{

S1

ω2 − ν2
1

sin ν1t − ε
2S1γν1

(ω2 − ν2
1)2

cos ν1t
}

(13)

+
{

S2

ω2 − ν2
2

sin(ν2t + δ) − ε
2S2γν1

(ω2 − ν2
2)2

cos(ν2t + δ )
}

But at α = 0 our equation of motion has become

ẍ + ε2γẋ + ω2x = S1 sin(ν1t) + S2 sin(ν2t + δ)

for which (see again page 15 in Chapter 3) we possess the exact solution

x(t) = B sin(ωt + β ) + S1√
(ω2 − ν2

1)2 + 4ε2γ2ν2
1

sin
[
ν1t − arctan ε2γν1

ω2 − ν2
1

]
+ S2√

(ω2 − ν2
2)2 + 4ε2γ2ν2

2

sin
[
ν2t + δ − arctan ε2γν2

ω2 − ν2
2

]

Expansion in powers of ε gives back (in first order) precisely (13). This little
argument serves to expose the specific respects in which the argument that led
to (12) is defective: it provides no indication of the adjustment

1
ω2 − ν2

�−→ 1√
(ω2 − ν2)2 + 4ε2γ2ν2

that typically serves to temper the singularities at resonance, and it provides
only a veiled indication of the phase shift. If carried to higher order (daunting
prospect!) the theory, whether or not it remedied those defects, would pretty
clearly lead to additional, more complexly-constructed combination frequencies.

The preceding discussion owes some of its characteristic features to the fact
that it was a cubic term αx3 that we introduced into the equation of motion;
had we inserted a quadratic nonlinearity αx2, as is more commonly done,13

we would have been led to combination frequencies |ν1 ± ν2|. And there is, of
course, no physical reason for the stimulus S(t) not to be a superposition of
three or more frequencies ν1, ν2, ν3, . . . No reason, indeed, for it not to be an
arbitrary function of time, like the signal delivered to a nonlinear speaker.

7. Numerical methods. We have in recent pages been studying phenomena—
particularly resonance phenomena—manifested by driven nonlinear oscillators,
systems with equations of motion of the general form

ẍ + 2γẋ + ω2x + f(x) = S(t) : f(x) nonlinear

13 See, for example, §10.1 in A. H. Nayfeh.8
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One thing has become clear: the analytical theory of such systems presents
difficulties at every turn. It is well to take note, therefore, of the fact that there
is another way: one can proceed numerically. With modern software such an
approach can be quick, easy and highly informative. Here I will illustrate the
point as it relates to systems of the type

ẍ + 2γẋ + ω2x + αx3 = S1 sin ν1t + S2 sin ν2t (14)

Note that I have omitted the familiar ε-factors, since we will now not be drawing
upon perturbation theory.

We recognize first of all that it is very easy to graph the solution of (14)
in any particular case:

Figure 14: Solution of (14) in the case S1 = S2 = 4, ω = α = 1,
2γ = 1

10 , x(0) = ẋ(0) = 0. The commands were

motion = NDSolve[{x ′′[t]+ 1
10x

′[t]+x[t]+x[t]3 == Sin[5t]+Sin[7t],

x[0] == 0, x ′[0] == 0}, x[t], {t,80,180}] [[1]]

Plot[x[t] /. motion, {t,160,180}, Ticks→False];

We waited until t = 80 to start the evaluation of x(t) so that the
initial transcients—to which the assumed natural frequency ω = 1
contributes prominently—have had a chance to die down. And for
clarity we have plotted only the last 20 time units.

We were led by the discussion in §6 to expected resonances at

ν1 = 5
ν2 = 7

3ν1 = 15
3ν2 = 21

2ν1 + ν2 = 17
2ν1 − ν2 = 3
2ν2 + ν1 = 19
2ν2 − ν1 = 9
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To expose those we look to the power spectrum of the computed x(t), which
provides indication of the relative weights of the Fourier components that
contribute to the construction of x(t).14 To that end, we command

discretizedmotion = Table[x[t] /. motion, {t, 80,180,.05}];

and then plot the absolute value of the discrete Fourier transform of the list
thus generated:

powerspectrum = ListPlot[Take[Abs[Fourier[discretizedmotion]],

{1,200}], PlotJoined→ True, PlotRange→{0,0.5},
PlotStyle→ Thickness[0.007], Ticks→ False];

I have removed the ticks because they refer to frequency bin numbers, rather
than to literal frequency. To remedy that defect we command

referencefreqs = Table[Sin[t]+Sin[5t]+Sin[7t]
60

,{t, 100,200,.05}];

and plot (in color) the power spectrum of that data:

referencefreqsplot = ListPlot[Take[Abs[Fourier[referencefreqs]],

{1,180}], PlotJoined→ True, PlotRange→{0,0.5},
PlotStyle→ {Thickness[0.005], RGBColor[1,0,0]}, Ticks→ False];

Finally we command Show[{referencefreqsplot,powerspectrum}]; and get
the following figure, which shows resonances at the driving frequencies ν1 = 5,
ν2 = 7 and—just as important—the absence of a transcient resonance at ω = 1.

Figure 15:Power spectrumof the motion x(t) shown inFigure 14.

14 This is a subject to which we will later have occasion to give detailed
attention. In the meantime see http://en.wikipedia.org/wiki/Power spectrum.
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The plan now is, while holding {S1, S2, α, γ, ν1, ν2, x(0), ẋ(0)} fixed, to
slowly increase ω—to turn Figure 15 into a movie, as it were—and to look
for the appearance of peaks in the spectral density, peaks announcing that we
have come upon a secondary resonance frequency (“secondary resonance” being
a term that refers collectively to superharmonics, subharmonics, combination
resonances).15 To illustrate the results to which such a procedure might lead:
we are led by 1st-order theory16 to anticipate a resonance at 2ν1 − ν2 = 3, so
we set ω = 3 and obtain Figures 16 & 17.

Figure 16: Graph of the solution x(t) of (14) when {S1, S2, α, γ,
x(0), ẋ(0)} retain their former values, but ω = 3. The graph has
been superimposed upon a red copy of Figure 14 to display the
difference between xω=1(t) and xω=3(t). The driving frequencies
predominate. Variation of the natural frequency ω, now that the
transcients have died, has served only to change the amplitude.

The somewhat skewed profile of the resonance at ω = 3 (Figure 17) is
more pronounced at ω = 3.1 (Figure 18), where it has become a distinct
“zig-zag.” Such a profile is to be expected whenever perturbation theory
supplies a factor of the form

1
(ω2 − ω2

resonance)odd

—as, indeed, (12.1) does in this instance.17

One often hears it said that “nonlinear physics is difficult.” The preceding
discussion suggests that, while such physics may be difficult to approach
analytically , it can be expected to yield readily enough to numerical analysis.

15 In the laboratory ω—since it refers to an intrinsic property of the oscillator
—would typically not be susceptible to variation: one would tune ν1 and/or ν2.

16 Of dubious relevance, one might suppose, since at α = 1 the nonlinearity
is not small.

17 Look to the coefficient of sin[(2ν1 − ν2)t − δ ].
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Figure 17: Power spectrum in the case ω = 2ν1 − ν2 = 3. Careful
examination of Figure 15 shows that a faint hint of this resonance
was evident already at ω = 1.

Figure 18: Power spectrum in the case ω = 3.1.

8. Chaos. Arguing from

torque = d
dt (angular momentum)

and Figure 19 we obtain the pendulum equation

θ̈ + ω2 sin θ = 0 : ω2 ≡ g/�

In leading nonlinear approximation we have

θ̈ + ω2θ − 1
2ω2θ3 = 0

which is an instance of the equation we have studied now at some length. I
propose now, however, to look (numerically) to the pendulum equation in its
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θ
�

mg

Figure 19: The gravitational torque (relative to the pivot point) is

torque = −mg� sin θ

The angular momentum of the bob (again relative to the pivot point)
is

angular momentum = m�2θ̇

full nonlinear glory. Introducing damping and a harmonic stimulus (by nature
a torque, not a force), we have this particular instance

θ̈ + 2γθ̇ + ω2 sin θ = S cos νt (15)

of the equation presented at the bottom of page 22. What is so striking about
(15) is the inexhaustible variety of its solutions, of which I must be content to
display but a small sample.18 The graphs of θ(t) wre produced by commands
identical to those presented in the caption of Figure 14, the only difference
being that I allowe t to run from 0 to 250. To obtain parametric plots of the
curve traced on the phase plane by {θ(t), θ̇(t)} the command was

ParametricPlot[{Evaluate[x[t] /. pendulummotion].

Evaluate[D[x[t] /. pendulummotion,t]]} /. t→ T,

{T,0,250}, MaxBend→ 1];

18 I have selected my examples from among those discussed by S.Neil Rasband
in §6.4 of his Chaotic Dynamics of Nonlinear Systems (1990).
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Figure 20: Above : a graph of θ(t) in the case

γ = 1
10 , ω2 = 1, S = 0.52, ν = 0.694, θ(0) = 0.8, θ̇(0) = 0.8

Below : the same data displayed as on the phase plane. The system
has discovered a period-3 limit cycle.
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Figure 21: All parameters are the same as in Figure 20 except
that the stimulus frequency has been adjusted ν �−→ 0.668. The
system has discovered a period-5 limit cycle.
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Figure 22: All parameters are the same as in Figure 21 except
that the initial conditions have been adjusted

θ(0) �−→ −0.8, θ̇(0) �−→ 0.1234

The system has discovered a period-1 limit cycle.
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Figure 23: Superimposed graphs of θ(t) in the cases

γ = 1
10 , ω2 = 1, S = 0.85, ν = 0.53, θ(0) = 0.00000.00000.0000, θ̇(0) = 0

and (in red )

γ = 1
10 , ω2 = 1, S = 0.85, ν = 0.53, θ(0) = 0.00020.00020.0002, θ̇(0) = 0

Rasband18 states that the motion of the pendulum is in this case
(and in infinitely many other cases) demonstrably chaotic. Note the
rapid divergence of solutions that proceed from very nearly identical
initial conditions.

I have advanced no technical definition of “chaos,” nor do I (on this
occasion) intend to. The points I wish to make are simply that

• the harmonically stimulated damped pendulum is a mechanical system of
astonishing richness;

• its riches lie, for the most part, beyond the reach of classical analysis, but
• yield readily to numerical exploration;
• similar remarks pertain to almost all nonlinear mechanical systems.

It is a pleasure to acknowledge my debt to Joel Franklin for expert
assistance in developing some of the computational strategies that are described
in the text.


