
1
VECTORS & MATRICES

1. First steps along the path from arrows to vectors.1 To say (as beginning
physicists are commonly taught to do) that “a vector is a quantity that—
like an arrow—has associated with it a magnitude and a direction”2 is a bit
like saying that “an animal is a creature with long ears and a fluffy tail:”
rabbits are animals alright, but not all animals are rabbits. Similarly, vector
algebra/calculus does provide a natural language for the description and
manipulation of the many arrow-like objects directed to our attention by physics
and applied mathematics, but pertains usefully also to many objects—such, for
example, as polynomials

a(x) = a0 + a1x+ a2x
2 + · · · + amx

m

—that do not bring arrows spontaneously to mind.

The theory of vectors—linear algebra—is an abstract (but for the most
part not at all difficult) branch of pure mathematics, which should not be
identified with any of its individual applications/manifestations. That said,
it must be admitted that arrow-like applications to geometry (especially to
Euclidean geometry in spaces of two or three dimensions) and kinematics did
serve historically to provide an important motivating force3 (the theory of

1 It is intended that this material will be read in conjunction with Chapter 7
in K. F. Riley, M. P. Hobson & S.l J. Bence, Mathematical Methods for Physics
and Engineering (2nd edition  2002).

2 See, for example, D. Halliday, R. Resnick & J. Walker, Fundamentals of
Physics (4th edition ), page 46; D. C. Giancoli, Physics for Scientists &
Engineers (3rd edition ), page 45.

3 For a wonderful account of the fascinating history of linear algebra, see
M. J. Crowe, A History of Vector Analysis ().
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simultaneous linear equations provided another) and does still provide an
admirably transparent introduction to the main ideas. It is therefore without
further apology that I will follow a time-worn path to our subject matter.

Figure 2—not Figure 1—provides the image we should have in mind
when we think of “vector spaces,” however complicated the context. But vector
spaces are of little or no interest in and of themselves: they acquire interest from
the things we can do in them. Which are three:

• We can multiply vectors by constants (or, as they are often called in this
subject area, “scalars” and which will, for the moment, be assumed to be
real-valued: see Figure 3)

• We can add vectors (see Figure 4)

• We can move vectors around within V, but discussion of how this is done
must be deferred until we have prepared the soil.

The set
{
aaa, bbb, ccc, . . .

}
is assumed to be closed under each of those operations

(and in the contrary case does not constitute a vector space).

Scalars (real or complex numbers) can themselves be added and multiplied,
subject to the familiar associativity, distributivity and commutivity rules. It
is, however, not assumed that vectors can be “multiplied” (though is some cases
they can be).

Multiplication of aaa by −1 yields a vector −aaa that in arrow language would
be represented by a directionally-reversed copy of aaa. To say the same thing
another way, we have

aaa− aaa ≡ aaa+ (−aaa) = (1 − 1)aaa = 0aaa = 000

as a corollary of the primative statement (λ + µ)aaa = λaaa + µaaa. Relatedly, we
have

λ(aaa+ bbb) = λaaa+ λbbb

which states that scalar multiplication is a linear operation (of which we are
destined to see many much more interesting examples).

A set of vectors
{
aaa1, aaa2, . . . , aaap

}
is said to be linearly independent if and

only if
λ1aaa1 + λ2aaa2 + · · · + λpaaap = 000 requires that all λi = 0

and otherwise to be linearly dependent. In the latter circumstance one could
describe one vector in terms of the others, writing (say)

aaap =
λ1aaa1 + λ2aaa2 + · · · + λp−1aaap−1

λp

And if the vectors in the numerator were linearly dependent one could continue
the process, until all the vectors were described in terms of some linearly
independent subset.
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Figure 1: Representation of the set of all possible arrows (all
lengths, all directions, all points of origin), drawn on the plane.
Such objects are called “space vectors” by Riley et al,“displacement
vectors” by most American authors.

Figure 2: “Pincushion” that results from our agreements to identify
all arrows that are translates of one another (i.e., to dismiss as
irrelevant the “point of application”) and to attach all tails to the
same point. That point, thought of as an undirected arrow of zero
length, provides a representation of the null vector 000. Individual
vectors will be denoted aaa, bbb, ccc, . . .Collectively they comprise a vector
space V.
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−2aaa aaa 3aaa

Figure 3: Representation of the relationship of λaaa to aaa, in the cases
λ = 3 and λ = −2. It will be appreciated that while it is possible
to construct an arrow that is k times as long as another arrow,
it is not possible literally to “multiply an arrow by k ,” though it is
possible to multiply by k the vector that represents the arrow.

aaa+ bbb

bbb

aaa

Figure 4: Representation of the construction that assigns meaning
to aaa+ bbb. Again, while it is not possible literally to “add arrows,” it
is possible to add the vectors that represent the arrows.

It is clear that any p -tuple of arrows (p � 3) inscribed on a plane (i.e., any
such p -tuple of vectors in V2) is necessarily linearly dependent, and that every
maximal set of linearly independent plane-arrows has exactly two elements. In
3-space every maximal set has three elements. It is not difficult to show more
generally that every maximal set of linearly independent vectors in a given
vector space V has the same number n of elements. One writes

dim[V ] = n : n is the dimension of V

and—to emphasize that the space is n-dimensional—Vn in place of V.

Every such maximal set
{
aaa1, aaa2 . . . , aaan

}
in Vn constitutes a basis in Vn, a

minimal set in terms of which every xxx ∈ Vn can be developed

xxx = x1aaa1 + x2aaa2 + · · · + xnaaan

The numbers
{
x1, x2, . . . , xn

}
are the coordinates ofxxx relative to the given basis.

Adopt a different basis and the same xxx acquires a different set of coordinates:
we must be careful never to confuse coordinates with the things they describe. It
often proves convenient to display coordinates as stacks of numbers (i.e., as
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n× 1 matrices):

x1

x2

...
xn


 : coordinates of xxx with respect to a given basis

It follows readily from preceding remarks that if (relative to some given basis)

xxx and yyy have coordinates



x1

x2

...
xn


 and



y1

y2

...
yn




then

i) λxxx has coordinates



λx1

λx2

...
λxn




ii) xxx+ yyy has coordinates




x1 + y1

x2 + y2

...
xn + yn




I have, by the way, decorated coordinates with superscripts rather than
with subscripts (and in this respect honored an entrenched convention which
Riley et al have chosen to violate) for reasons which only much later will I have
occasion to explain.

For arrows inscribed on the Euclidean plane (or erected in Euclidean
3-space) we find it quite unproblematic to speak of

• the length a ≡ |aaa| of any given arrow aaa

• the angle θ ≡ aaa∠bbb subtended by any given pair of arrows.
I turn now to discussion of the several-step procedure by which those primitive
metric concepts can be so abstracted as to become concepts assignable to
vectors. All proceeds from the introduction (within Euclidean space) of the
dot product of a pair of arrows, which is itself not an arrow but a number ,
denoted and defined

aaa···bbb ≡ ab cos θ

It is natural to construe aaa∠bbb—the angle constructed by folding aaa into bbb— to
be the negative of bbb∠aaa . But cos θ is an even function, so that in the present
context is a distinction without a difference:

aaa···bbb = bbb···aaa
The metric notions that feed into the construction of aaa···bbb are themselves easily
recovered:

aaa···aaa = a2 � 0, with equality if and only if aaa = 000

cos θ = aaa···bbb√
aaa···aaa ·

√
bbb···bbb
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Much will be found to hinge upon the linearity of the dot product ; i.e., upon the
fact that

aaa···(bbb1 + bbb2) = aaa···bbb1 + aaa···bbb2
—the truth of which follows by inspection from the following figure:

bbb = bbb1 + bbb2 bbb2

bbb1
θ1 θ2

aaa b1 cos θ1 b2 cos θ2
b cos θ

Figure 5: Transparently b cos θ = b1 cos θ1 + b2 cos θ2, which when
multiplied by a becomes the condition aaa···bbb = aaa···bbb1 + aaa···bbb2 claimed in
the text.

From the linearity of the dot product (which by symmetry becomes
bi linearity) it follows that in two dimensions

xxx···yyy = (x1aaa1 + x2aaa2)···(y1aaa1 + y2aaa2)

= x1y1aaa1···aaa1 + x1y2aaa1···aaa2 + x2y1aaa2···aaa1 + x2y2aaa2···aaa2

If the elements of the basis were
• of unit length (or “normalized”): aaa1···aaa1 = aaa2···aaa2 = 1
• and orthogonal to each other: aaa1···aaa2 = aaa2···aaa1 = 0

then the preceding result would assume this much simpler form

= x1y1 + x2y2

as a special instance of which we recover the Pythagorean theorem:

xxx···xxx = (length of xxx)2 = x2
1 + x2

2

These results extend straightforwardly to any finite number n of dimensions.
They provide first indication of the the computational simplicity/efficiency that
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typically follow automatically in the wake of a decision to select an orthonormal
basis

{
eee1, eee2, . . . , eeen

}
:4

eeei···eeej = δij ≡
{ 1 if i = j

0 otherwise

REMARK: The literal product of two “quaternions”
(inventions of the Irish physicist W. R. Hamilton in
the s) was found to have a “scalar” part and a
“vectorial” part. In the simplified vector algebra devised
by the American physicist J. W. Gibbs in the s the
former became the “dot product,” the latter the “cross
product.” But in the Gibbs’ scheme the “dot product”
is not properly a “product” at all: it is meaningless
to write aaa···bbb···ccc, and while (aaa···bbb)ccc and aaa(bbb···ccc) each has
unambiguous meaning (and, clearly, they are generally
not equal). I would prefer to speak of the “dotproduct,”
a symmetric bilinear number-valued function of vector
pairs in which the final seven letters serve simply to
recall some interesting history.

REMARK: The defining propeties of the dot product were
abstracted from metric aspects of Euclidean geometry,
but one can—as we will have occasion to do—turn the
procedure around, using the dot product to assign metric
properties (i.e., to deposit definitions of “length” and
“angle” upon) Vn. Note that in the absence of such
definitions it becomes impossible to assign a meaning
to “orthonormality,” and impossible therefore to gain
access to the advantages that follow therefrom.

I turn now to brief discussion of a couple of the useful applications of the
dot product and orthonormality ideas:

PROBLEM 1: Let aaa be any vector in Vn, and let n̂nn be any unit
vector. Writing aaa = aaa‖ +aaa⊥ with aaa‖≡ (aaa···n̂nn)n̂nn and aaa⊥≡ aaa−aaa‖ show
that aaa‖ and aaa⊥ are orthogonal: aaa‖···aaa⊥ = 0.

4 My eee-notation is intended here and henceforth to signal that the elements
of the basis in question are, by assumption, orthonormal. In 3-dimensional
contexts—but only in those—one frequently sees

iii written for eee1
jjj written for eee2
kkk written for eee3

though this practice entails sacrifice of all the many advantages that indices
afford.
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Write aaa =
∑

i a
ieeei to describe the development of an arbitrary vector

aaa ∈ Vn with respect to an arbitrary orthonormal basis
{
eeei

}
. Immediately

aaa···eeej = aj

so we have
aaa =

∑
i

(aaa···eeei)eeei : all aaa

This is sometimes called “Fourier’s identity” because it is—as we will have
occasion to see—an elaboration of this simple idea that lies at the heart of
Fourier analysis and all of its generalizations.

PROBLEM 2: Vectors eee1 and eee2, when referred to some unspecified
orthonormal basis, can be described

eee1 =

( √
3

2

1
2

)
and eee2 =

(− 1
2√
3

2

)

a) Show that eee1 and eee2 are orthonormal; i.e., that
{
eee1, eee2

}
itself comprises an orthonormal basis.

b) Evaluate the numbers a1 and a2 that permit the vector

aaa =
(

7
2

)

to be written aaa = a1eee1 + a2eee2.

I defer discussion of the “cross product”5 aaa× bbb because—though arguably
a proper “vector-valued product of vectors”—it is meaningful only within V3,
and meaningful there only “by accident.”

2. Some vector systems having nothing to do with arrows. Consider the set Pm

of all mth-order polynomials

a(x) = a0 + a1x+ a2x
2 + · · · + amx

m

with real coefficients. Clearly,
• if a(x) is such a polynomial then so also is every real multiple of a(x);
• if a(x) and b(x) are such polynomials then so also is a(x) + b(x).

Which is all we need to know to assert that Pm is a vector space. It is clear
also that

{
x0, x1, x2, . . . , xm

}
are linearly independent elements of Pm, in which

collectively they comprise a basis. We conclude that Pm is (m+1)-dimensional,
a vector space of type Vm+1.

5 See §§7.6.3 & 7.6.4 in Riley et al .
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How might we deposit metric structure upon Pm? Here Euclidean geometry
provides no guidance, but the formal properties of the dot product do. Consider,
for example, the construction

a(x)···b(x) ≡
∫ β

α

a(x)b(x)w(x)dx

where the limits of integration are considered to be given/fixed, and where w(x)
is taken to be some agreed-upon well-behaved real-valued function. Clearly,
the a(x)···b(x) thus defined is a real-valued symmetric bilinear function of its
arguments, and if w(x) non-negative on the interval then

a(x)···a(x) � 0, with equality if and only if a(x) ≡ 0

We could ask for nothing more: we find ourselves in position to speak of the
“length”

√
a(x)···a(x) of a polynomial, of the “cosine of the angle between” two

polynomials

cos θ ≡ a(x)···b(x)√
a(x)···a(x)

√
b(x)···b(x)

and of the “orthogonality” of polynomials:

a(x) ⊥ b(x) if and only if a(x)···b(x) = 0

EXAMPLE: Here follows a list of the first five Hermite polynomials
(as supplied by Mathematica’s HermiteH[n,x] command):

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

Setting α = −∞, β = +∞ and w(x) = e−x2
we discover that

Hm(x)···Hn(x) =
√
π 2nn! δmn

The Hermite polynomials are orthogonal, but (as they stand) not
normalized.

EXAMPLE:Here follows a list of the first five Chebyshev polynomials
of the first kind (as supplied by Mathematica’s ChebyshevT[n,x]
command):

T0(x) = 1
T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1
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Setting α = −1, β = +1 and w(x) = (1 − x2)−
1
2 we discover that

T 0 (x)···T 0 (x) = π

Tm(x)···Tm(x) = 1
2π : m = 1, 2, 3, . . .

Tm(x)···T n (x) = 0 : m �= n

The Chebyshev polynomials are orthogonal, but are again not (as
they stand) normalized.

The theory of orthogonal polynomials finds many important applications in
diverse branches of physics and applied mathematics. The subject is, for
some reason, not discussed by Riley et al , but see (for example) Chaper 22
in Abramowitz & Stegun.6

PROBLEM 3: Develop a(x) = a+ bx+ cx2 + dx3 as a weighted sum
of Hermite polynomials:

a(x) = h0H0(x) + h1H1(x) + h2H2(x) + h3H3(x)

Feel free to use Mathematica to perform the integrals.

PROBLEM 4 : What, relative to Hermite’s definition of the dot
product, is the cosine of the angle between a(x) = x and b(x) = x2?

additive color mixing Consider the set of all colored disks that might
be projected onto the wall of a darkened room, or displayed on a computer
screen. If AAA identifies such a disk, and BBB identifies another, we write

• kAAA to signal that disk AAA has been made k times “brighter” (at k = 0 the
light source has been turned off);

• AAA+BBB to signal that disks AAA and BBB have been superimposed.
Additive/subtractive color mixing are complementary subjects that had already
a long history7 by the time () the 28-year-old J. C. Maxwell entered upon
the scene, but it is upon his work that modern color technology mainly rests.
Maxwell (who worked not with superimposed disks of light but with spinning
tops) found that with only three colors—taken by him to be saturated red RRR,
saturated green GGG and saturated blue BBB—he could reproduce any color CCC :
symbolically

CCC = rRRR + gGGG+ bBBB

where
{
r, g, b

}
real numbers—“color coordinates”—that range on [0, 1]. Writing

ccc ≡


 r
g
b




6 M. Abramowitz & I. Stegun, Handbook of Mathematical Functions ().
7 Go to http://www.handprint.com/HP/WCL/color6.html for a pretty good

survey of the subject and its history.
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he found that (trivially) 
 0

0
0


 gives black

while (not at all trivially) 
 1

1
1


 gives white

and (taking k to lie between 0 and 1)

at


 k
k
k


 we get various depths of grey

More particularly (see Figure 6),


 0

1
1


 gives cyan


 1

0
1


 gives magenta


 1

1
0


 gives yellow

The color orange presents an interesting problem: any child would tell us to
construct red + yellow, but


 1

0
0


 +


 1

1
0


 =


 2

1
0




and the 2 falls outside the allowed interval [0, 1]. We are obliged to to proceed


 .5

0
0


 +


 .5
.5
0


 =


 1
.5
0


 : gives orange

as illustrated in Figure 7. Evidently “multiplication by scalars” is subject to
some idiosyncratic restrictions in the vector theory of colors. That same point
emerges also from another consideration. Anyone who has repeated Maxwell’s
top experiments has discovered thast the colors achieved have typically a
washed-out appearance—much less vivid that the primaries from which they
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Figure 6: In each row, additive superposition of the colors on
the left gives the color on the right. The figure was produced by
Mathematica, in response to commands of the design

cyan = Show[Graphics[{
{RGBColor[0,1,0], Disk[{0,0}, .2]},
{RGBColor[0,0,1], Disk[{.4,0}, .2]},
{RGBColor[0,1,1], Disk[{1.1,0}, .2]}
}], AspectRatio→Automatic];

Figure 7: To achieve orange we have been forced to attenuate the
red and yellow. The command here read

orange = Show[Graphics[{
{RGBColor[.5,0,0], Disk[{0,0}, .2]},
{RGBColor[.5,.5,0], Disk[{.4,0}, .2]},
{RGBColor[1,.5,0], Disk[{1.1,0}, .2]}
}], AspectRatio→Automatic];

The attenuated colors would look dimmer in a dark room, but on
this white page look blacker.
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are constucted. To circumvent this difficulty, Maxwell invoked a strategy that
can be described color + k · white = rRRR + gGGG + bBBB or again

CCC +


 k

k
k


 = r


 1

0
0


 + g


 0

1
0


 + b


 0

0
1




It seems natural in this light to write

CCC =


 r − k

g − k
b− k




But there are certainly instances in which the vector on the right will have
negative elements, though there is no such thing as “negative light” of any
color! The entry of negative coordinates into the theory of vector spaces is an
unavoidable consequence of the postulated existence of a zero element 000. But in
color space the zero is black, and (absent of the perfect interference effects that
are alien to this discussion) no light can be superimposed upon another light
so as to produce black. So it is by a kind of formal trickery that negative
coordinates enter into the theory of color space: color space is—if a vector
space at all—a vector space with some highly non-standard properties.

“Vector theorists” that we are, and the preceding remark notwithstanding,
we find it natural to pose certain questions:

• Can bases alternative to Maxwell’s
{
RRR,GGG,BBB

}
-basis be used to span the

space of colors?
• Why do some color-production processes use 4 or 5-color sets of ink/light?
• How did Edwin Land (go to http://land.t-a-y-l-o-r.com/) manage to get

along with only two colors?
• Can metric structure be assigned to color space in a natural/useful way?

Here the answer is a qualified “yes.” The matter was first explored by
Helmholtz, whose work was taken up and extended by Schrödinger
(∼), but they were concerned with “just noticeable differences” in
color. The associated mathematics did borrow from non-Riemannian
differential geometry, but made no direct use of the dot product idea.
Helmholtz’ involvement (he pioneered the “physics of perception”) and the
allusion to “just noticeable differences” underscore the long-recognized fact
that the “theory of color (color vision)” lives in the place where physics and
neurophysiology intersect.

Mathematica makes it easy to perform certain kinds of experiments in
this subject area. Even handier for that purpose is the Color Palette that is
accessible from many of the applications that run on Apple computers. One
must be aware, however, that an

{
RRR,GGG,BBB

}
predisposition (circumventable in

Mathematica) is built into the design of the software, and can introduce bias
into some results.
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3. Natural occurrences of the “matrix” idea. The formal “theory of matrices”
is, like so much else, a 19th Century development, but the basic ideas almost
invent themselves as soon as one undertakes to work through certain issues
that, pretty obviously, will be central to any “theory of vector spaces.” I will
approach the subject from several angles:

from one basis to another Write

xxx =
n∑

i=1

xiaaai (1)

to describe the development of xxx with respect to
{
aaai

}
, a basis in Vn. To render

explicit the relation between
{
aaai

}
and

{
âaaj

}
, a second basis in Vn we write

aaa1 =
∑

j

M j
1 âaaj

aaa2 =
∑

j

M j
2 âaaj

...

aaan =
∑

j

M j
n âaaj




or more compactly
aaai =

∑
j

M j
i âaaj (2)

Then

xxx =
∑

i

∑
j

xiM j
i âaaj

=
∑

j

x̂ j âaaj with x̂ j ≡
∑

i

M j
ix

i (3)

To pass back again to the original basis we write

âaaj =
∑

k

W k
jaaak (4)

and obtain
=

∑
j

W k
j x̂

jaaak

But the coefficient of aaak is by definition just xk, so we have

xk =
∑

j

W k
j x̂

j (5)

=
∑

i

{∑
j

W k
jM

j
i

}
xi
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which entails {∑
j

W k
jM

j
i

}
= δk

i (6)

δk
i ≡

{
1 : k = i
0 : k �= i

Matrix notation permits us to surpress the indices and, by elimination of
notational clutter, to clarify what is going on. Display the n2 numbers M j

i

in n× n tabular array

M ≡




M1
1 M1

2 . . . M1
n

M2
1 M2

2 . . . M2
n

...
...

...
Mn

1 Mn
2 . . . Mn

n


 ≡ ‖M row

column‖ (7)

and—proceeding similarly—from the numbers W k
j assemble W. Drawing our

inspiration from (6), we will understand
∑

k W
i
kM

k
j to define the ijth element

of the matrix product W M. By straightforward extension:
• if A = ‖Aij‖ is m× n and
• if B = ‖Bij‖ is p× q we will
• understand ‖

∑
k AikBkj‖, which is meaningful if and only if n = p, to

define the ijth element of the m× q matrix product AB

=

Notice that the reversed product BA will be meaningful if and only if it is also
the case that m = p, and that—as illustrated below

=

=

—it becomes possible to contemplate writing AB = BA if and only if A and
B are both square, and of the same dimension. But even then equality is not
assured, as the example serves to demonstrate: let

A =
(

1 2
3 4

)
and B =

(
5 6
7 8

)
Then

AB =
(

19 22
43 50

)
but BA =

(
23 34
31 46

)
�= AB

The short of it: matrix multiplication, though invariably associative, is generally
non-commutative.
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Let the coordinates xi be deployed as elements of a n×1 “column matrix”

x ≡




x1

x2

...
xn


 (8)

and from the x̂i proceed similarly to the assembly of x̂. Equations (3) and (5)
can then be notated

x̂ = Mx and x = Wx̂ (9.1)

while it is the upshot of (6) that

WM = I with I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Evidently W is the “left inverse” of M. But by a simple argument8 the “left
inverse” is also the “right inverse,” so we henceforth drop the distinction, writing
simply M

–1 in place of W. For reasons made clear on the preceding page, only
square matrices can have inverses. If A and B are invertible square matrices,
then transparently

(AB) –1 = B
–1
A

–1

To render (1) in matrix notation we deploy the basis vectors aaai as elements
of a 1 × n “row matrix”

a ≡ (aaa1 aaa2 · · · aaan )

and from the âaai proceed similarly to the assembly of â. This done, (1) becomes

xxx = ax : vector-valued object of type

Equation (4) has become

â = aW whence also a = âM (9.2)

8 Write WLM = M WR = I, multiply on the left by WL and obtain

WLM WR = WLI

⇓
WR = WL
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So we have
xxx = ax

= âM M
–1x̂

= âx̂

which exposes this important fact: a change of basis stimulates basis elements
aaai and coordinates xi to transform by distinct but complementary rules :{

aaai

}
−−−−−−−−−−−−−−→

mediated by M

{
âaai

}
{
xi

}
−−−−−−−−−−−−−−→

mediated by M
–1

{
x̂i

} (10)

It is to distinguish one from the other that we
• decorate objects of the first type with subscripts, and say that they

transform “covariantly;”
• decorate objects of the second type with superscripts, and say that they

transform “contravariantly.”
The point just developed acquires special importance in “multilinear algebra”
(tensor algebra).9

linear transformations In the discussion just concluded the vectors
xxx sat there passively, while the basis vectors moved around within Vn and the
coordinates of xxx therefore took on adjusted values. We adopt now a different
stance: we assume it to be now the elements

{
aaai

}
that sit there passively, while

the vectors xxx move around under action of an “operator” O:

O : xxx �−→ xxx ′

Such a viewpoint becomes very natural if one thinks about the vector xxx(t) that
describes—relative to a fixed reference frame—the (often very complicated)
motion of a mass point m in response to prescribed forces FFF (xxx, t). We restrict
our attention here, however, to linear operators—operators L that act subject
to the rule

L : λaaa + µbbb �−→ (λaaa + µbbb) ′ = λaaa ′ + µbbb ′

From linearity it follows that if xxx =
∑

j x
jaaaj then xxx ′ =

∑
j x

jaaaj
′, and if

aaaj
′ =

∑
Li

jaaai

describes the aaai
′s in reference to the static original basis then we have

xxx ′ =
∑

i

x ′iaaai with x ′i =
∑

j

Li
jx

j

With the clear understanding that the numbers x ′i, Li
j and xj all refer to the

9 Impatient readers might at this point want to have a look at Chapter 21
in Riley et al .
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fixed
{
aaai

}
-basis, we have in a by-now-obvious matrix notation

x ′ = Lx which is of the design = (11)

Equation (11) is said to provide a (basis dependent) matrix representation of
the action of L.

We found on page 6 that if xxx =
∑

i x
iaaai and yyy =

∑
j y

jaaaj then

xxx···yyy =
∑

i

∑
j

xigijy
j with gij ≡ aaai···aaaj (12)

To express the dot product in matrix notation (which is often advantageous)
we need a new idea: the transpose of a matrix A, denoted A

T, is the changing
rows into columns, columns into rows. If A is m× n then A

T is n×m:

T =

The symmetry of a matrix (AT = A) clearly requires that it be square. From
the trivial identity A = 1

2 (A + A
T) + 1

2 (A−A
T) we see that every square matrix

can be decomposed

A = A symmetric part + Aantisymmetric part

Returning now to (12), we have

xxx···yyy = xT
Gy with G ≡ ‖gij‖ = G

T

With respect to any orthonormal basis
{
eeei

}
we have G = I, giving

xxx···yyy = xT y : number-valued object of type

Linear transformations serve generally to alter the value of dot products:

xT
Gy �−→ x ′ T

Gy ′ = xT
L

T
G Ly

Pretty clearly, a linear transformation will preserve all dot products (all lengths
and angles)

= xT
Gy : all x, y

if and only if it is a property of L that
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Figure 8: The blue vectors �−→ red vectors under action of the
rotation operator L which, relative to a specified orthonormal basis
(black vectors), is represented by the rotation matrix L.

L
T
G L = G

which becomes

⇓
L

T
L = I when the basis is orthonormal (13)

Matrices with the property (13) are called rotation matrices, and have (among
many other important properties) the property that inversion—normally an
intricate process, as will emerge—is accomplished by simple transposition.

EXAMPLE: Look to the 2-dimensional case

L =
(
a b
c d

)

The condition (13) is seen by quick calculation to entail

a2 + b2 = 1

c2 + d2 = 1
ac + bd = 0

Conformity with the first pair of requirements is achieved if we set

a = cosα
b = sinα

c = sinβ

d = cosβ
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The final requirement then becomes

cosα sinβ + sinα cosβ = sin(α + β) = 0

which in effect forces β = −α, giving

L =
(

cosα sinα
− sinα cosα

)
(14)

For description of an elegant method that permits the argument
to be extended to n dimensions (n � 2) see §4 in “Extrapolated
interpolation theory” ().

systems of linear equations The following system of inhomogeneous
linear equations10

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm




(15.1)

is more conveniently notated

Axxx = bbb (15.2)

and, fairly clearly, will be
• underdetermined if m < n

= (16.1)

• possibly determined (solvable) if m = n

= (16.2)

• overdetermined if m � n

= (16.3)

As a description of the solution of (15) we expect to have

xxx = A
–1bbb : exists if and only if A

–1 does

10 We assume that no equation can be written as a linear combination of the
others, for such an equation would be redundant.



Determinants and the matrix inversion problem 21

Which brings us into direct confrontation with two questions: Under what
conditions does A

–1 exist, and when it does exist how is it constructed? The
theory of matrix inversion (which was was remarked already on page 15 requires
that A be square) hinges on the

4. Theory of determinants. The history of this subject can be traced back
through contributions by Laplace and Vandermonde () to work done by
Maclaurin in  but published (posthumously) only in . Maclaurin
observed that when

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b1

is solved for (say) z one gets

z =
(a21a32 − a22a31)b1 + (a12a31 − a11a32)b2 + (a11a22 − a12a21)b3

a11a22a33 + a12a23a31 + a13a32a21 − a13a22a31 − a12a21a33 − a11a32a23

and tried to describe the patterns hidden in this and analogous resuls. In
 Gabriel Cramer rediscovered Maclaurin’s result and suggested notational
improvements: Cramer’s Rule would today be written

z =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
: similar constructions supply x and y

The formal theory of determinants (which we today think of as number-valued
functions of square matrices) was launched by Cauchy’s publication of an
84-page memoir in —the interesting point being that this was prior to
the development of a theory of matrices!

By modern definition

det A ≡
∑
P

(−)Pa1i1
a2i2

· · · anin

where the sum ranges over all permutations P ≡
(

1 2 · · · n
i1 i2 · · · in

)
and (−)P

is plus or minus according as the permutation is even or odd. Thus11

det
(
a11 a12

a21 a22

)
= a11a22 − a12a21

det


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 = + a11a22a33 − a12a21a33 + a13a21a32

− a11a23a32 + a12a23a31 − a13a22a31

11 Here I used Mathematica’s MinimumChangePermutations command to
generate my list of permutations.
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Figure 9: Mnemonics widely used for the evaluation of detA in the
2 and 3-dimensional cases : add the products joined by red lines,
subtract the products joined by blue lines. From

det An×n = sum of n! terms

and the observation that the construction supplies only 2n terms we
see that the construction cannot possibly work in cases n � 4.

The terms that contribute to det A can be grouped in a great variety of ways.
Every text describes, for example the recursive Laplace expansion procedure,
whereby (if one has elected to “expand along the top row”) one writes

det A = a11A11 + a12A12 + · · · a1nA1n (17)

where Aij—the “cofactor” of aij—is defined

Aij ≡ (−)i+j ·
{

determinant of the (n− 1) × (n− 1) matrix formed
by striking the ith row and jth column from A

But specialized monographs12 describe a great variety of alternative procedures,
some of which sometimes prove more efficient/useful. Today one would usually
find it most convenient simply to ask Mathematica to evaluate

Det[square matrix]

Equation (17) is a special instance of the equation

det A =
∑

k

aikAik (18.1)

And it is not difficult to show13 that∑
k

aikAjk = 0 : i �= j (18.2)

12 The classic is Thomas Muir, A Treatise on the Theory of Determinants
(, revised and enlarged by W. H. Metzler in , reissued by Dover in
). In  Metzler published a history of the theory of determinants.

13 See Chapter 1 page 55 in my classical mechanics (/). The
essential point is that if Q...i...j... = −Q...j...i... then

∑
i,j Q...i...j... = 0.
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EXAMPLE: In the 3-dimensional case

A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33




we find, for example, that

a11A11 + a12A12 + a13A13

= a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= sum of 6 terms encountered at the bottom of page 21
= det A

while

a21A11 + a22A12 + a23A13

= a21

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a22

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a23

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= sum of 6 terms that cancel pairwise
= 0

Equations (18) can be combined to read

∑
k

aikAjk = det A · δij

⇓
‖aij‖ · ‖Aij‖T = det A · I

which is not simply a collection of formulæ for the evaluation of det A : it
permits us to write

‖aij‖–1 ≡ A
–1 =

‖Aij‖T

det A
= transposed matrix of cofactors

determinant
(19)

and to observe that

A
–1 exists if and only if det A �= 0: A is non-singular (20)

It is by now apparent that matrix inversion is generally a complicated business.
In practice we are usually content to leave the labor to Mathematica : the
command

Inverse[square matrix]

quickly supplies the inverses of matrices that are far too large to be managed
by pen-&-paper computation.
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REMARK: We would be remiss not to take notice of
several general properties of determinants. Clearly

det O = 0
det I = 1

det(λA) = λn det A

That

det(AB) = det A · det B (21)
= det(BA)

can with patience be demonstrated by low-dimensional
example (or in higher dimension tested with the
assistance of Mathematica)—let A and B be 2× 2: then

det(AB) = (a11b11 + a12b21)(a21b12 + a22b22)
− (a11b12 + a12b22)(a21b11 + a22b21)

= (a11a22 − a12a21)(b11b22 − b12b21)
+ 8 terms that cancel pairwise

= det A · det B

From (21) it follows in particular that

det(A–1) = (det A)–1 (22)

I will not attempt to prove (21) in the general case: all
proofs know to me require the development of a certain
amount of support apparatus, and none is elementary
(for a relatively simple proof see page 49 in the old class
notes12 mentioned just above). Nothing useful can be
said about det(A+B) in the general case, but det(A−λI)
will presently assume a persistent major importance.

We are in position now to state exactly what we mean when we write
xxx = A

–1bbb to describe the solution of (15: case m = n). We are in position also
to assert that such a solution will exist if and only if detA �= 0. Or, to say the
same thing another way: if and only if the column vectors

ααα1 ≡




a11

a21
...

an1


, ααα2 ≡




a12

a22
...

an2


, . . . , αααn ≡




a1n

a2n
...

ann




are linearly independent.14

14 The argument here runs as follows: ααα1x1 + ααα2x2 + · · · + αααnxn = Axxx = 000
supplies the linear independence condition xxx = A

–1 000 = 000 if and only if A
–1 exists

(i.e., if and only if det A �= 0).
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PROBLEM 5 : While it is not particularly difficult to establish quite
generally that

det(AT) = det A

I ask you to demonstrate the point in the 3-dimensional case.

PROBLEM 6 : Let A be diagonal

A =




a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

...
0 0 0 . . . an




and let bk denote the natural logarithm of ak:

ak = ebk =
∑

p

1
p! (bk)p

Write

B =




b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

...
0 0 0 . . . bn




i) Discuss why it is sensible to write A = eB.

The trace of a square matrix is by definition the sum of the diagonal
elements:

tr A ≡ a11 + a22 + · · · + ann

ii) Argue that
det A = etrB (23.1)

Remarkably, this striking result—which can be expressed

log det A = tr log A (23.2)

is valid also for a very wide class of non -diagonal matrices.15

iii) If B were antisymmetric, what would be the value of det A?

15 EXAMPLE: Let

B =
(

0.8 0.2
0.4 0.5

)
Mathematica’s MatrixExp[square matrix] command supplies

A =
(

2.306582 0.389687
0.779373 1.722290

)

and we verify that indeed det A = e0.8+0.5 (= 3.6693).
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PROBLEM 7: Arguing from the definition (page 21), establish that
upon the interchange of any two columns a determinant changes
sign ∣∣∣∣∣∣∣∣∣

. . . p1 . . . . . . q1 . . . . . .

. . . p2 . . . . . . q2 . . . . . .

. . . pn . . . . . . qn . . . . . .

∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣

. . . q1 . . . . . . p1 . . . . . .

. . . q2 . . . . . . p2 . . . . . .

. . . qn . . . . . . pn . . . . . .

∣∣∣∣∣∣∣∣∣
and that the same is true of rows. Note that it follows from this
fact that if any two columns or rows are the same (or proportional)
then the determinant necessarily vanishes.

We have been concerned with the inversion of square matrices, taking our
motivation from a classic problem—the solution of systems of type (16.2). But
we will on occasion be confronted also with under/overdetermined systems
(types (16.1) and (16.3)). What can be said in such cases? The question
leads to a generalized theory of matrix inversion that permits the inversion of
rectangular matrices. But before we can approach that theory we must acquire
familiarity with

5. Some aspects of the eigenvalue problem. Though we approach this topic for a
fairly arcane practical reason, it is fundamental to the physics of many-particle
oscillatory systems, to quantum mechanics and to many other subjects, and
therefore has a strong independent claim to our attention.

Supposing A to be an n×n square matrix, we ask—as many physical (also
many geometrical/algebraic) considerations might lead us to ask—for solutions
of

Axxx = λxxx

i.e., for vectors xxx upon which the action of A is purely “dilational.” Clearly,
the equivalent equation

(A − λI)xxx = 000

will possess non-trivial solutions if and only if

det(A − λI) = 0

(for otherwise (A−λI)–1 would exist, and we would have xxx = (A−λI)–1 000 = 000).
We are therefore forced to set λ equal to one or another of the roots of the
“characteristic polynomial”

det(A − λI) = a0 + a1λ + a2λ
2 + · · · + anλ

n

These, by the fundamental theorem of algebra, are n in number, and may
be real or complex even though our tacit assumption that A be real forces the
coefficients

{
a0, a1, a2, . . . , an

}
to be real (and forces the complex roots to occur

in conjugate pairs).
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EXAMPLE: Looking to the x-parameterized class of cases

A(x) =
(

1 2
−2 x

)

we obtain
det A(x) = (4 − x) − (1 + x)λ + λ2

giving
λ = 1

2

[
1 + x±

√
(x + 3)(x− 5)

]
which are

• in real if x < −3 or x > 5;
• conjugate complex in all cases;
• equal to one another (degenerate) if x = −3 or x = 5.

Those roots—call them
{
λ1, λ2, . . . , λn

}
—are the eigenvalues (collectively, the

spectrum) of A, and their discovery is the first half of “the eigenvalue problem.”
The second half is to discover/display the associated eigenvectors, the vectors{
xxx1, xxx2, . . . , xxxn

}
that are defined by the equations

Axxxi = λixxxi : i = 1, 2, . . . , n

Notice that if A is real but λi is complex then the associated eigenvector xxxi will
of necessity be also complex: to accommodate such a development we would
have to move beyond our theory of real vector spaces to a theory of complex
vector spaces. I introduce now an assumption that will permit us to delay that
inevitable effort:

The matrices to which applications draw our attention are very often
symmetric, a circumstance which I will emphasize by writing S instead of A:

S
T = S

THEOREM: The eigenvalues of any real symmetric matrix S are
necessarily and invariably real .

Proof: Starting from Sxxxi = λixxxi and proceeding in the recognition
that xxxi may be complex, construct xxx∗

i···Sxxxi = λi(xxx
∗
i···xxxi). Clearly,

the number xxx∗
i···xxxi is (since, by the symmetry of the dot product,

equal to its own conjugate) is real in all cases. Appealing first to
the symmetry and then to the reality of S we have

xxx∗
i···Sxxxi = xxxi···Sxxx∗

i = (xxx∗
i···Sxxxi)

∗

So
λi =

xxx∗
i···Sxxxi

xxx∗
i···xxxi

= ratio of two real numbers QED

From the reality of S and λi it follows that, without loss of
generality, one can assume xxxi to be real.
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THEOREM: Eigenvectors associated with distinct eigenvalues of any
real symmetric matrix S are necessarily and invariably orthogonal .

Proof: Starting from
Sxxxi = λixxxi

Sxxxj = λjxxxj

construct
xxxj···Sxxxi = λixxxj···xxxi

xxxi···Sxxxj = λjxxxi···xxxj

From the symmetry of S it follows that the expressions on the
left (therefore also those on the right) are equal. Which by the
symmetry of the dot product means that

(λi − λj)xxxi···xxxj = 0

But by assumption (λi − λj) �= 0, so

xxxi···xxxj = 0 : i �= j QED

We can without loss of generality assume the xxxi to have been
normalized (which we emphasize by writing eeei in place of xxxi). This
done, we have (or, in cases of spectral degeneracy, can “by hand”
arrange to have)

eeei···eeej = δij (24)

We conclude that implicit in the design of every such S is an
S-adapted orthonormal basis in the vector space upon which S acts.

THEOREM: Every real symmetric matrix S can be “rotated to
diagonal form,” with its eigenvalues strung along the diagonal. To
say the same thing another way: There always exists a real rotation
matrix R (R

T
R = I: see again page19) such that

R
T
S R =



λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn


 (25.1)

Proof: From the normalized eigenvectors

eeei =




ei1

ei2
...
ein




construct R ≡ ( eee1 eee2 . . . eeen ). Then

R
T =




eee1
T

eee2
T

...
eeen

T



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and that R
T
R = I is seen to be simply a restatement of the

orthonormality conditions (24): eeei
Teeej = δij . Equally immediate

are the statements

S R = S · ( eee1 eee2 . . . eeen )
= (λ1eee1 λ2eee2 . . . λneeen )

which entail

R
T
S R =




λ1eee1
Teee1 λ2eee1

Teee2 . . . λneee1
Teeen

λ1eee2
Teee1 λ2eee2

Teee2 . . . λneee2
Teeen

...
...

...
λ1eeen

Teee1 λ2eeen
Teee2 . . . λneeen

Teeen




=



λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn


 by othonormality QED

6. Singular value decomposition (SVD). It has been known for a long time to
mathematicians,15 and is a fact that for several decades has been known to and
heavily exploited by experts in numerical computation16—but that remains
generally unfamiliar to physicists—that the “spectral representation”

S = R



λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

...
0 0 0 . . . λn


 R

T (25.2)

of the real symmetric (square) matrix S is simply the most familiar instance
of a vastly more general representation theorem that pertains to all—even to
rectangular—matrices S. I refer to what has come to be called the “singular
value decomposition” (or SVD)—of which, by the way, earlier versions of
Mathematica knew nothing, but Mathematica5 provides an implementation
that is very sweet, and upon which I will draw heavily.

15 The subject originates in papers published by Eugenio Beltrami () and
Camille Jordan (), the substance of which was independently reinvented a
bit later by J. J. Sylvester and elaborated a generation later by E. Schmidt and
Hermann Weyl. See “On the early history of the singular value decomposition”
by G. W. Stewart, SIAM Review 35, 551 (1993).

16 See J. C. Nash, “The singular-value decomposition and its use to solve
least squares problems,” in Compact Numerical Methods for Computers : Linear
Algebra & Function Minimization (2nd edition ), pages 30–48; G. H. Golub
& C. F. Van Loan, “The singular value decomposition” in Matrix Computations
(3rd edition ), pages 70–71; and J. E. Gentle, “The singular value
factorization” in Numerical Linear Algebra for Applications in Statistics (),
pages 102–103.
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Let A be a real17 m× n matrix. Construct

A · AT : m×m real symmetric matrix
A

T·A : n× n real symmetric matrix

Both of these are matrices to which the theory developed in the preceding
section directly pertains: the eigenvalues of each will assuredly be real, and
(because each is a “square” of sorts) we will not be surprised if the eigenvalues
turn out to be non-negative.

EXAMPLE: Let

A =




1 2 3
4 5 6
2 3 4
5 6 7
3 4 5




The commands Eigenvalues[A·AT] & Eigenvalues[A
T·A] provide{

278.924, 1.07556, 0, 0, 0
}

and
{
278.924, 1.07556, 0

}
respectively. The “singular values”18 are the positive square roots
of the latter numbers, and are (as here) conventionally presented in
descending order:

σ1 =
√

278.924 = 16.7010

σ2 =
√

1.07556 = 1.03709
σ3 = 0

The command SingularValueDecomposition[N[A]]19 produces a
list of three matrices

U =




−0.219 −0.743 −0.615 −0.140 −0.049
−0.525 +0.155 +0.196 −0.757 −0.298
−0.321 −0.444 +0.582 +0.443 −0.407
−0.627 +0.454 −0.422 +0.459 −0.103
−0.423 −0.144 +0.259 −0.005 +0.856




17 The theory is usually presented as it pertains to complex matrices. It is
only for expository simplicity that I have assumed reality.

18 The obscure terminology is reported to derive from aspects of the work
of Schmidt and Weyl, who approached this subject not from linear algebra but
from the theory of integral equations.

19 Mathematica would read (say) 3 in this context as an implicit demand
that it work in higher precision than its algorithm is designed to achieve: it
insists that we instead write N[3]= 3.0, etc.
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D =




16.70 0. 0.
0. 1.037 0.
0. 0. 0.
0. 0. 0.
0. 0. 0.




V =


−0.441 +0.799 +0.408

−0.568 +0.103 −0.816
−0.695 −0.592 +0.408




Executing the commands

Transpose[U].U//Chop//MatrixForm

Transpose[V].V//Chop//MatrixForm

(//Chop discards artifacts of the order 10−16, and I have abandoned
most of the decimal detail that Mathematica carries in its mind)
we discover that U and V are both rotation matrices, while D is
“diagonal” in the lopsided sense that the example serves to define.
Finally we execute the command

A-U.D.Transpose[V]//Chop//MatrixForm

and discover that, in this instance,

A = U D V
T (26)

The remarkable fact—the upshot of the singular value decomposition theorem,
which I will not attempt to prove—is that decompositions of the form (26) are
available in all cases. When A is square and symmetric (26) gives back precisely
(25.2) or (when one or more of the eigenvalues of A are negative) to a slight
variant thereof.

PROBLEM 8: a) Look to the case

A =


 1 2 3

2 5 6
3 6 9


 : real symmetric

Compare the lists produced by the commands Eigenvalues[A]//N
and SingularValueList[N[A]]//Chop. Write out in matrix form
the matrices U, D, and V that are produced by the command
SingularValueDecomposition[N[A]]//Chop . Compare U and V.
Demonstrate that U and V are rotation matrices, and discuss the
relationship in this instance between (26) and (25.2).
b) Repeat those steps in the case

B =


 1 2 3

2 5 6
3 6 7


 : real symmetric

and state your conclusions.
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PROBLEM 9: Repeat those steps as they pertain to the extreme
case

A =




1
2
3
4




and demonstrate that indeed

U D V
T =




1.
2.
3.
4.




This exercise serves to underscore the universality of the SVD.

PROBLEM 10: a) Show that if the n×n matrix A is antisymmetric
then

det A = det A
T = (−)n det A

= 0 if n is odd

b) Repeat the now-familiar sequence of steps in the case

A =


 0 −3 4

3 0 −5
−4 5 0


 : real antisymmetric

What’s funny about the eigenvalues? Comment on the relation of
the eigenvalue list to the singular value list, and on the relation of
V to U.
c) Use the command MatrixExp[A] to construct R ≡ eA and show
(in anticipation of things to come) that R is a rotation matrix.

Assume for the moment (as the founding fathers of this subject always
assumed) that the real matri A = U D V

T is square. Then so also with the
diagonal matrix

D ≡



σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

0 0 . . . σn




and the rotation matrices U and V be square. Clearly

D
–1 =




1/σ1 0 . . . 0
0 1/σ2 . . . 0
...

...
...

0 0 . . . 1/σn




is (when it exists) the left/right inverse of D, and it will exist if and only if none
of singular values σi vanishes: σ1σ2 · · ·σn �= 0. It is clear also that
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A
–1 ≡ V D

–1
U

T (27)

serves to describe (when it exists) the left/right inverse of A, and that it will
exist if and only if D

–1 does. We have here a matrix inversion that makes no use
of determinants. We will not be terribly surprised, therefore, to discover (recall
that det A is defined only for square matrices) that (27) has valuable things to
say even when A is rectangular (which is to say: not square).

We look now to an illustrative case in which A—still assumed to be square
—is singular (det A = 0). The remarkable fact is that we are not in such cases
stopped cold in our tracks. We are placed by the SVD in position to salvage all
that can be salvaged. Consider the example

A =


 1 2 3

4 5 6
7 8 9




which is found to have

eigenvalues :
{
16.12, −1.117, 0

}
singular values :

{
16.85, 1.068

}
The command MatrixRank[A] answers the question “How many linearly
independent vectors can be constructed from (i.e., what is the dimension of
the space spanned by) the rows of A? Which in this case turns out to be 2.
The command RowReduce[A] produces

A row reduced =


 1 0 −1

0 1 2
0 0 0




which is in effect a list of linearly independent vectors

mmm1 ≡


 1

0
−1


 , mmm2 ≡


 0

1
2




that are not annihilated by A (nor, indeed, is any linear combination of those
vectors). The command NullSpace[A] responds, on the other hand, with a
list—here a list with a single entry

nnn1 =


 1

−2
1




—of linearly independent vectors that are annihilated by A. Generally, the
vectors

{
nnn1, nnn2, . . . , nnnq

}
span the “null space” of A, a q -dimensional subspace

N of the vector space V upon which A acts, while the
{
mmm1,mmm2, . . . ,mmmp

}
span
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the p = n − q = Rank[A]-dimensional complement N* of N. Elements of N*
are orthogonal to elements of N: in the present instance we verify that indeed

mmm1···nnn1 = mmm2···nnn1 = 0

For xxx ∈ N we have Axxx = 000 and it is unreasonable to expect to be able to write
xxx = A

–1 000, for such an A
–1 would recreate xxx out of nothing. On the other hand,

or xxx in N* we have Axxx = yyy �= 000 and it seems reasonable that we might expect
to be able to write xxx = A

–1yyy. The SVD supplies means to do so.

Returning to our example, we have20

A = U D V
T

D =


σ1 0 0

0 σ2 0
0 0 σ3


 with σ1 > σ2 > σ3 = 000

and construct

A* ≡ V D*U
T

with (note the 0 in the 33 place, where one might have expected to find an ∞)

D* ≡


 (σ1)–1 0 0

0 (σ2)–1 0
0 0 000




and verify by computation that

A* · Ammm1 = mmm1

A* · Ammm2 = mmm2

A* · Annn1 = 000


 (27)

Evidently A* acts as an inverse on N*, but acts passively on N.

The wonderful fact—at which I hinted already on the preceding page—is
that this basic strategy works even when A is rectangular. Consider the example

B =




1 2 3
4 5 6
7 8 9
3 5 7




which has rank 2. Such a matrix cannot be said to have eigenvalues, but
its singular values are well defined: they are

{
19.10, 1.818

}
(always equal in

number to the rank). The space N* is again 2 dimensional, and spanned by
the same vectorsmmm1 andmmm2 as were encountered in the preceding example. The

20 It would be distracting and not very informative to write out the numeric
details, which I will be content to allow to remain in the mind of the computer.
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null space N is again 1-dimensional, and spanned again by nnn1. But U is now
4 × 4, V is now 3 × 3 and D given now by

D =




19.10 0 0
0 1.818 0
0 0 000
0 0 0




From

D* =


 (19.10)–1 0 0 0

0 (1.811)–1 0 0
0 0 000 0




we construct A* ≡ V D*U
T —which was 3 × 3 but is now 3 × 4 —and again

recover (27).

Look finally to the case

C =


 1 4 7 3

2 5 8 5
3 6 9 7


 = B

T

which has rank 2 and the same singular values as B. N* is again 2-dimensional,
and spanned by

mmm1 =




3
0
−3
5


 , mmm2 =




0
3
6
1




But the null space N is now also 2-dimensional, spanned by

nnn1 =




−5
−1
0
3


 , nnn2 =




1
−2
1
0




We verify again that N*⊥N. From

D =


 19.10 0 0 0

0 1.811 0 0
0 0 000 0




we construct

D* =




(19.10)–1 0 0
0 (1.818)–1 0
0 0 000
0 0 0




and proceed as before to the same satisfactory conclusion.
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Thus are we able to assign a useful interpretation to the statement that
“every real matrix—whether square or rectangular—is invertible.” We find
ourselves in position to discuss sensibly the solution of any linear system (16),
even those that are under/overdetermined. We have in hand what Riley et al
(their page 307) call “the method of choice in analyzing any set of simultaneous
linear equations.”

EXAMPLE: Suppose we had interest in the overdetermined system


1 2 3
4 5 6
2 3 4
5 6 7
3 4 5





x1

x2

x3


 =




1
2
3
4
5


 : more compactly Axxx = bbb

where A figured already in the example on page 30. A is of rank 2,
and its 1-dimensional null space is spanned once again by

nnn =


 1

−2
1




By computation

A* = 1
30


−17 4 −10 11 −3

−2 1 −1 2 0
13 −2 8 −7 3




Writing
bbb = bbbnon-null + bbbnull

we compute

Abbb = Abbbnon-null = 1
6


−2

1
4


 ≡mmm ⊥ nnn

giving

bbbnon-null = A*mmm = 1
2




4
7
5
8
6




bbbnull = bbb− bbbnon-null = 1
2




−2
−3
1
0
4




and with these statements we can explicitly verify that

Abbbnon-null = mmm,

Abbbnull = 000 ,

A*mmm = bbbnon-null

A* 000 = 000
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For a useful brief discussion of the preceeding subject matter one might
inquire after “linear systems” in the Mathematica5 Help Browser, which opens
an electronic version of §3.7.8 in the most recent edition of S. Wolfram’s text.
Google (ask for SVD) leads also to a great many sources, some of which are
quite informative. See also §8.18.3 in Riley et al .

7. Alternative approach to the same material. Imagine that you have in front of
you a device the output b of which is controlled by n adjustable precision dials.
In the ith of a series of m experiments you set the dials to read{

ai1, ai2, . . . , ain

}
: i = 1, 2, . . . ,m

and measure as best you can the output

xi = Xi + ei :
{
Xi is the “true value” for that dial setting
ei is error

You conjecture that the output depends linearly on the dial settings

Xi = ai1k1 + ai2k2 + · · · + ainkn = xi − ei

and seek “best estimated values” of the constants
{
k1, k2, . . . , kn

}
. With Gauss,

you interpret “best” to mean “the k-values that minimize
∑

i(ei)2. In an
obvious matrix notation, your problem is to minimize the length of the “error
vector” eee = Akkk − xxx ; i.e., to discover the kkk that serves to

minimize : (Akkk − xxx)T(Akkk − xxx) = kkkT
A

T
Akkk − kkkT

A
Txxx− xxxT

Akkk + xxxTxxx

= kkkT(AT
Akkk − 2A

Txxx) + xxxTxxx

Differentiating with respect to each of the components of kkk, then setting all
derivatives equal to zero, we find kkk = (AT

A)–1
A

Txxx. In short: were it the case
that eee = 000 we would be proceeding

from Akkk = xxx to kkk =Apseudo inverse xxx

Apseudo inverse ≡ (AT
A)–1

A
T

In practice a good experimentalist would, in an effort to achieve high
accuracy, make many measurements (m 
 n) and confront the situation of
illustrated below:

= =⇒ =

The train of thought sketched above appears to have occurred first to
E. H. Moore, whose remarks at a regional meeting in  of the American
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Mathematical Society are summarized in that society’s Bulletin21 but attracted
little attention. The subject was independently reinvented in the mid-s
by Roger Penrose, whose initial publication22 lacked clear motivation and was
phrased quite abstractly, but was followed promptly by a paper23 intended
to establish “relevance to the statistical problem of finding ‘best’ approximate
solutions of inconsistent systems of equations by the method of least squares.”
The matrix that I have denoted Apseudo inverse is often called the “generalized
left inverse” or “Moore-Penrose inverse,” and is constructed by Mathematica5
in response to the command “PseudoInverse[A ].” The remarkable fact is that

A* and Apseudo inverse refer to the same object

I will not belabor the demonstration, but offer a single example to illustrate
the point: let

A =




1 2
2 3
3 4
4 5
5 6




Looking first to A* and then to Apseudo inverse we find that

A* = Apseudo inverse =
(
−1.0 −0.6 −0.2 0.2 0.6

0.8 0.5 0.2 −0.1 −0.4

)

and that the pseudo inverse is (with Mathematica5’s indispensable assistance)
much easier to evaluate.

PROBLEM 11: Evaluate the pseudo inverse of

A =




1
2
3
4
5




What do you make of the denominators? What do you guess would
be the pseudo inverse of an arbitrary single-column matrix (or
vector)?

8. A clever application of the SVD. I turn finally to discussion of an application
of SVD-related ideas that was brought to my attention by Joel Franklin, and
that originated in some of his own work having to do with the mechanics of
many-body systems. Let N points be interconnected by ν � N(N − 1) rigid

21 Bull. Amer. Math. Soc. (2) 26, 394 (1920).
22 “A generalized inverse for matrices,” Proc. Camb. Phil. Soc. 51, 406 (1955).
23 “On best approximate solutions of linear matrix equations,” Proc. Camb.

Phil. Soc. 52, 17 (1956).
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linkages. Our problem is to decide whether or not the linkages render the
point system rigid. The problem could be posed in any number of dimensions:
I will, for expository convenience, assume that the points lie in a plane. Let
vectors

{
xxx1, xxx2, . . . , xxxN

}
mark the positions of the points, and let vectors{

aaa1, aaa2, . . . , aaaν

}
descibe the linkages:

aaaα = xxxj(α) − xxxi(α) : links ith point to the jth

The assumed inextensibility of the linkages means that point-adjustment is
allowed only to the extent that it preserves each of the numbers

ϕα(xxx1, xxx2, . . . , xxxN) ≡ 1
2 aaaα···aaaα

Writing
{
xxx1, xxx2, . . . , xxxN

}
�−→

{
xxx1 + δxxx1, xxx2 + δxxx2, . . . , xxxN + δxxxN

}
to describe an

infinitesimal adjustment, we find that the δxxx’s are constrained to satisfy

N∑
k=1

∇∇∇kϕα(xxx)···δxxxk = 0

EXAMPLE: Reading from the Figure 10 we have

aaa1 = xxx2 − xxx1

aaa2 = xxx3 − xxx2

aaa3 = xxx1 − xxx3

aaa4 = xxx4 − xxx1

giving
δϕ1 = (xxx2 − xxx1)···(δxxx2 − δxxx1) = 0
δϕ2 = (xxx3 − xxx2)···(δxxx3 − δxxx2) = 0
δϕ3 = (xxx1 − xxx3)···(δxxx1 − δxxx3) = 0
δϕ4 = (xxx4 − xxx1)···(δxxx4 − δxxx1) = 0

which when spelled out in detail can be written24




−X21 −Y21 +X21 +Y21 0 0 0 0
0 0 −X32 −Y32 +X32 +Y32 0 0

+X13 +Y13 0 0 −X13 −Y13 0 0
−X41 −Y41 0 0 0 0 +X41 +Y41







δx1

δy1

δx2

δy2

δx3

δy3

δx4

δy4




=




0
0
0
0
0
0
0
0




and abbreviated J δδδ = 000. To see more clearly past the notational

24 Here Xij ≡ xi − xj , Yij ≡ yi − yj .
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4

2 4

1 1

2
3

3

Figure 10: A system of 4 points interconnected by four linkages.

clutter we observe that J possesses the design

J =




−a −b a b 0 0 0 0
0 0 −c −d c d 0 0
e f 0 0 −e −f 0 0

−g −h 0 0 0 0 g h




We are informed by Mathematica5 that

MatrixRank[ J ] = 4

(this is, after all, obvious to the unaided eye) which means that the
associated null space N is 8 − 4 = 4 dimensional. But rigid objects
on the plane have only 3 degrees of freedom: two translational and
one rotational. We conclude that the object shown in the figure
has one “floppy degree of freedom,” and it is easy to see what it is:
point #4 is not tied down. If we link that point to point #2 then

J �−→ K =




−a −b a b 0 0 0 0
0 0 −c −d c d 0 0
e f 0 0 −e −f 0 0

−g −h 0 0 0 0 g h
0 0 m n 0 0 −m −n




K is seen to have rank 5, the associated null space N is only
3-dimensional, the system has become rigid. The command

NullSpace[K ]
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works—even though K is symbolic (not numerical)—to produce a
triple of symbolic vectors that comprise a basis in N. One readily
verifies that, in particular, the vectors




1
0
1
0
1
0
1
0




and




0
1
0
1
0
1
0
1




that serve respectively to describe x-translation and y -translation
lie in N. Orthogonal to them (and more difficult to describe) is the
vector that generates infinitesimal rotations.


