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Recently N. A. Wheeler has posed questions in regard to the thermodynamics of the par-
tition function p(n, k), being the number of partitions of n into exactly k parts. Experimental
plots of p(n, k) for fixed n and k ∈ [1, n] appear on the face of it to be “Maxwellian” (perhaps
“Planckian”) in the sense of a rising graph with a clear maximum, then a (supposedly) expo-
nential tail for large k approaching n. Denoting standardly the celebrated partition count p(n)
of all partitions of n, one might conjecture that the probabilities

fn,k :=
p(n, k)

p(n)
,

which of course satisfy the normalization

n∑
k=1

fn,k = 1,

represent something like a contour of Maxwellian speeds at a particular temperature.
This suppositions of thermodynamical or quantal contour may be approximately true in

some local fashion, but overall such suppositions are false. There is a doubly-exponential
distribution result of Erdös and Lehner on partition theory [1], which refers to P (n, k) being the
number of partitions of n having at most k parts. (Thus, formally, p(n, k) = P (n, k)−P (n, k−1)
for n ≥ 1, and P (n, 0) := 0.) The Erdös–Lehner result is that for the assignment

X(k) :=
k√
n
− 1

c
log n,

we have

lim
n→∞

P (n, k)

p(n)
= e−

c
2
e−

2
c X(k)

.
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Here the absolute constant is

c := π

√
2

3
.

This theorem leads to an asymptotic estimate for the probability density as a discrete form

fn,k ∼ e−
c
2
e−

2
c X(k)

− e−
c
2
e−

2
c X(k−1)

.

One might also replace the discrete differencing from k → k − 1 with a derivative, to obtain
heuristically a continuous analogue (which we have also normalized with a prefactor depending
on n):

f(n, k) =
1

1− e−
2
c

√
n
e
− c

2
k√
n e−

2
c

√
n e

− c
2

k√
n
.

Here the variable k is now continuous, ranging as k ∈ [0,∞]. (Though k ≤ n in the discrete
theory, it is convenient to allow any such k for this continuous density.) With these caveats we
have, exact normalization ∫ ∞

0

f(n, k) dk = 1.

It is remarkable that actual numerical plots show the continuous analogue to be inferior to the
discrete form for relatively small k, as discovered by N. Wheeler.

Using the (suspect) continuous density—again heuristically—a maximum of said density
should occur at the mode value

k0 ∼
1

π

√
3

2

√
n log n.

This supposition turns out to be rigorously valid, in the sense that G. Szekeres established in
1953 [2] the sharper, yet consistent asymptotic

k0 =

√
6

π

√
n L +

6

π2
(3(L + 1)/2− L2/4)− 1/2 + O((log4 n)/

√
n),

with L := log((1/π)
√

6n).
It was also known to Erdös and Lehner that for k <<

√
n we have

P (n, k) ≈ 1

k!

(
n− 1

k − 1

)
.

From this perhaps one can use p(n, k) = P (n, k)−P (n, k− 1) to determine the small-k density
fn,k. It would be good to develop a unified theory of how such a small-k estimate joins with
the doubly-exponential behavior for larger k.
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