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Introduction. In a recent paper,1 John Conway and Simon Kochen claim to have
proven that “if the choice of a particular type of spin one experiment is not a
function of the information accessible to the experimenters [i.e., is an unforced
decision made by exercise of their free will], then its outcome is equally not
a function of the information accessible to the particles.” I have found their
argument to be elusively slippery. I write here in an effort to place the essentials
of their argument in sharper focus.

A remarkable property of solitary spin-one particles. The spin matrices of a
spin-one particle can be taken to be

S1 = !




0 0 0
0 0 −i
0 i 0





S2 = !




0 0 i
0 0 0
−i 0 0





S3 = !




0 −i 0
i 0 0
0 0 0










(1)

which are seen to satisfy the required commutation relations

[S1, S2] = i!S3

[S2, S3] = i!S1

[S3, S1] = i!S2

1 Foundations of Physics 36, 1441–1473 (2006).
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From the form of the sum of their squares

S2 = S2
1 + S2

2 + S2
3 = 2!2




1 0 0
0 1 0
0 0 1





it is evident that [Sk, S2] = O (k = 1, 2, 3). Almost as obviously, their squares

S2
1 = !2




0 0 0
0 1 0
0 0 1





S2
2 = !2




1 0 0
0 0 0
0 0 1





S2
3 = !2




1 0 0
0 1 0
0 0 0





commute with each other, so comprise a compatable set of observables. Each
has eigenvalues {0, !2, !2}, while S2 has eigenvalues {2!2, 2!2, !2}. The striking
implication is that if a state ρ (whether pure or mixed) is presented to Si, the
resulting eigenstate presented to Sj , and the then resulting eigenstate presented
finally to Sk (here i, j, k are any permutation of 1, 2, 3), the meter readings
{Mi, Mj ,Mk} are certain to present some permutation of {1, 0, 1},2 and the
last meter reading is always forced, redundant—a foregone conclusion.

This is a straightforward implication of orthodox quantum theory—the
upshot of what Conway & Kuchen call the SPIN axiom. I emphasize that it is
special to the case of spin one. For spin one-half one has

S1 = 1
2!

(
0 1
1 0

)
, S2 = 1

2!
(

0 −i
i 0

)
, S3 = 1

2!
(

1 0
0 −1

)

Again, the squares commute, but now for an uninteresting reason:

S2
1 = S2

2 = S2
2 = 1

4!2

(
1 0
0 1

)

Such measurements do not tell us anything, and they conform trivially to the
fact that S2 measurements always read 3

4!2. For spin three-halves one has

2 The meters are calibrated in units of !2, which I henceforth set equal to
unity.
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S1 = 1
2!





0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0





S2 = 1
2!





0 −
√

3 0 0√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0





S3 = 1
2!





3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3





and finds that the squares of these matrices fail to commute; indeed, one has

[S2
1, S2

2] = [S2
2, S2

3] = [S2
3, S2

1] = !2





0 0
√

3 0
0 0 0 −

√
3

−
√

3 0 0 0
0

√
3 0 0





So the game is stopped bfore it can even get under way. And so (presumably)
it goes for all higher spin values. All subsequent remarks pertain exclusively to
the case spin = one.

Instruments that measure spin in the direction indicated by the unit vector
aaa are represented by the matrix

S(aaa) ≡ a1S1 + a2S2 + a3S3

and measurement of spin-squared in the direction aaa is represented by

S2(aaa) ≡
{
a1S1 + a2S2 + a3S3}2 = I3 −




a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3





(in which I have again set ! = 1). Thought of as an operator on real 3-space, this
matrix acts by projection onto the plane ⊥ aaa (which accounts for its spectrum:
{0, 1, 1}), but by intention it will act on the complex 3-space of spin states.

Peres’ simplification of the Kochen-Specker no-go theorem. Einstein, who
embraced a philosophy of local determinism, would interpret the 101 rule as
an indiction that within every solitary spin-one particle lurks an “instruction
set” that tells the particle how to respond to spin-squared measurements. To
S2(aaa)-measurement the instruction set might say “announce 0,” else it will say
“announce 1.” In the former case, it will for every S2(bbb)-measurement (bbb ⊥ aaa)
instruct “announce 1.” In the latter case it will, for every orthogonal pair
{bbb1, bbb2} in the bbb-plane, instruct “announce 1 (else 0)” if/when subjected to
S2(bbb1)-measurement, and will instruct “announce 0 (else 1)” if/when subjected



4 The free will theorem of Conway & Kochen

to S2(bbb2)-measurement. Einstein, Podolsky and Rosen argued () that so
long as such instruction sets were ignored the “quantum-mechanical description
of physical reality” must be considered incomplete. Nevertheless . . .

Simon Kochen and Ernst Specker (), by an intricate argument the
essence of which had been anticipated by Andrew Gleason (1957), managed
to demonstrate that no instruction sets with the properties just stated cannot
exist: the stipulated properties present a combinatorial problem that possess no
solution. Asher Peres () devised the much simpler variant of the Kochen-
Specker argument of which Conway & Kochen make use.

Peres is led by the following figure to as set of 33 rays (directions in
3-space) which can be used construct a population of 72 orthogonal pairs, and
a population of 16 orthogonal triads. The instruction set can be interpreted to

Figure 1: The cube from which Peres obtains his set of 33 rays.

require that one and only one leg of each of the 16 triads be painted red. This
can be accomplished in many ways. But in every case at least one of the 72
orthogonal pairs ends up with both members red—which is disallowed.

J. S. Bell () had shown that if one places a pair of spin-one-half
particles in a certain entangled state (the singlet state) and looks to
certain correlational features of the data generated when such a system is
subjected to certain measurements, and if one finds those correlational features
to be in violation of a certain inequality, then one cannot attribute those
correlational features to instruction sets hidden within the particles. That
the inequality in question is in fact violated was established by convincing
experiment: “spooky action-at-a-distance” was shown thus to be a fact of
nature; quantum mechanics was shown to be profoundly non-local.

But the non-existence of hidden variables was, by this line of argument,
supported only by statistical evidence. Kochen-Specker’s argument—the first
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of what has by now become a large population of “no-go theorems”—has in
this the light the great merit of being non-statistical: it establisheds that if one
grants the correctness of the 101 rule (which follows from the barest rudiments
of quantum theory, and is anyway subject to direct verification) then instruction
sets of the sort previously contemplated become a logical impossibility.

Instruction sets of the sort previously contemplated are said to be
“non-contextual” because they are formulated ray-by-individual-ray: they tell
the particle how to respond to S2(aaa)-measurement, independently of any other
measurements to which it might be subjected. The Kochen-Specker does not
serve to exclude the possibility of “contextual” instruction sets which would, in
the present instance, be formulated triad-by-individual-triad: they would tell
the particle how to respond to {S2(aaa), S2(bbb), S2(ccc)}, where the response to S2(aaa)
might vary from triad to triad. To address this possibility, Conway & Kochen
bring into play. . .

A remarkable property of entangled spin-one particle pairs. Consider a composite
system assembled from two spin-one particles, of which one is accessible to
Alice, the other to Bob, whose lab is some distance away. Angular momentum
operators for the composite system are

SSk = Sk ⊗ I + I ⊗ Sk : k = 1, 2, 3

where the 3 × 3 matrices Sk were defined at (1). Working from

SSiSSj = SiSj ⊗ I + Si ⊗ Sj + Sj ⊗ Si + I ⊗ SiSj (2)

we find that these 9 × 9 matrices satisfy

[SS1, SS2] = i!SS3

[SS2, SS3] = i!SS1

[SS3, SS1] = i!SS2

From (2) it follows also that

SS2
k = S2

k ⊗ I + 2 Sk ⊗ Sk + I ⊗ S2
k

SS2 ≡ S2 ⊗ I + 2
3∑

k=1

Sk ⊗ Sk + I ⊗ S2

[SS2, SS1] = [SS2, SS2] = [SS3, SS3] = O9

The eigenvalues of SS2 are3 {0, 2, 2, 2, 6, 6, 6, 6}, while those of SSk (k = 1, 2, 3)
are {−2,−1,−1, 0, 0, 0, +1, +1, +2}. The singlet state is defined by the

3 I again set ! = 1.
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equations

SS2|singlet) = SSk|singlet) = 0 · |singlet) : k = 1, 2, 3

which give

|singlet) = 1√
3





1
0
0
0
1
0
0
0
1





In terms of the eigenstates of S3—which are

uuu = 1√
2




−i
1
0



 , nnn =




0
0
1



 , ddd = 1√
2




+i
1
0





and satisfy
S3 uuu = +uuu

S3 nnn = 0 nnn

S3 ddd = −ddd

—one has
|singlet) = uuu ⊗ ddd + nnn ⊗ nnn + ddd ⊗ uuu√

3

which shows the singlet state to be a manifestly entangled state of the composite
system.

Alice is equipped with a meter—represented

A(aaa) = (a1S1 + a2S2 + a3S3)2 ⊗ I

—that, upon interaction with her particle, measures “spin squared in the
direction defined by the unit vector aaa .” The meter is calibrated to read either
0 or 1, since the eigenvalues of A(aaa) are {0, 0, 0, 1, 1, 1, 1, 1, 1}. The spectral
representation of A(aaa) is immediate:

A(aaa) = 0 · A0(aaa) + 1 · A1(aaa)

where A1(aaa) ≡ A(aaa) projects onto a 6-space, and A0(aaa) ≡ I−A(aaa) projects onto
the complementary 3-space. Bob is similarly equipped, with a meter represented

B(bbb) = I ⊗ (b1S1 + b2S2 + b3S3)2
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Consider now the following sequence of events: the composite system is
initially in the singlet state, represented by the density matrix

ρ••ρ = |singlet)(singlet|

Alice makes a measurement. Her meter reads 0 with probability

tr[A0(aaa)ρ••ρ ] = 1
3 and prepares the state ρ••ρ0 = A0(aaa)ρ••ρA0(aaa)

tr[A0(aaa)ρ••ρA0(aaa)

Else her meter reads 1 with probability

tr[A1(aaa)ρ••ρ ] = 2
3 and prepares the state ρ••ρ1 = A1(aaa)ρ••ρA1(aaa)

tr[A1(aaa)ρ••ρA1(aaa)

Now Bob does a spin-squared measurement on his particle, getting 0 or 1 with
probabilties that are conditioned by the result of Alice’s prior measurement
(i.e., by the system-state that Alice’s measurement prepared), and are given by
expressions of the form tr[ Bm(bbb)ρ••ρn] where m and n range on {0, 1}. Looking
specifically to the special case aaa = bbb (Bob and Alice measure spin-squared in
identical directions), we find

tr[ B0(aaa)ρ••ρ0] = 1 tr[ B1(aaa)ρ••ρ0] = 0

tr[ B1(aaa)ρ••ρ0] = 0 tr[ B1(aaa)ρ••ρ1] = 1

In short: if the composite system is in the singlet state, and if Alice and Bob use
identically aligned spin-squared meters, then they are certain to get identical
results (0s with probability 1

3 , 1s with probability 2
3 ). This is what Conway and

Kochen mean when they say the particles are “twinned.”
The situation here is precisely analogous that which arose when Alice

and Bob used aligned meters to measure the spin (not spin-squared) of paired
spin-one-half particles in the singlet state—the set-up used by Bohm/Bell to
demonstrate that “spooky action-at-a-distance” is a fact of nature and that
quantum systems in entangled states can exhibit counter-intuitive properties,
the set-up that when examined with a trio of suitably non-aligned spin-meters
was shown by Bell to lead from orthodox quantum mechanics to predicted (and
experimentally confirmed) results that lie beyond the reach of any plausible
non-contextual hidden variable theory. When regarded in this light, the fact
that spin-one particles in the singlet state are “twinned” seems not particularly
surprising/remarkable.

Statement and proof of the theorem. Alice is equipped with a control panel
with 16 buttons, each of which activates one or another of her 16 sets of triplex
spin-squared meters, the relative orientations of which conform to Peres’ 16-fold
set of triads. Alice, her spin-one particle, her experimental equipment and
procedures are confined within a spacetime bubble (neighborhood) A. Bob is
similarly equipped, confined within a bubble B.
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We assume all points of B to be spacelike separated from all points of A;
i.e., that B is outside the lightcone that extends back/forward from A, and
vice versa. It follows that the relationship between events in A and events in
B is necessarily acausal because (as Conway & Kochen emphasize) one cannot
assign frame-independent meaning to statements concerning which happened
first.

Alice elects of her own free will to press one or another of her buttons; she
elects, in other words, to measure (in some arbitrarily selected order order) the
spin-squared of her particle in the orthogonal triad of directions

{aaai, bbbi, ccci} : i selected from {1, 2, 3, . . . , 16}

She writes something like

θθθi =




θai

θbi

θci



 =




0
1
1



 else




1
0
1



 else




1
1
0





to record the results of her measurements. The phrase “of her own free will” is
interpreted here to signify that her decision was not dictated/pre-determined
by any event or combination of events in her backward lightcone.

Bob was similarly equipped, but broke up his 3-meter sets so as to produce
a set of 33 meters that are collectively capable of measuring spin-squared in
each of Peres’ 33 directions. He writes

θ0(xxxj) = 0 else 1 : j = 1, 2, 3, . . . , 33

to record the results of a measurement.

Because Alice/Bob’s respective particles are “twinned” it must be the case
that4

θθθi =




θ0(aaai)
θ0(bbbi)
θ0(ccci)



 : invariably (all i) (3)

Alice and Bob are exterior to each other’s light cones, acausally related, so
it is not possible for Alice’s button selection to have been signalled to Bob:
his own xxx-selection is necessarily unbiased, is (we assume) freely willed, not
dictated/pre-determined by any event or combination of events in his own
backward lightcone, but 3

16 or 18.75% of the time we can expect Bob’s xxx to
coincide with one of Alice’s chosen {aaa, bbb, ccc} vectors. It is to such cases that (3)
pertains.5 But any θ0(xxx) that in all cases conforms to (3) stands necessarily in

4 Note that two of the elements of the following vector are “counterfactual,”
in that they refer to the results of measurements that were not performed
(though they might have been).

5 The preceding remarks were phrases as though “Alice then Bob” were
the sequence of their respective actions, but some intertial observers would
reverse the sequence, and some (a minority) would see them to have acted
simultaneously.
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violation of the Kochen-Specker no-go theorem. We conclude that, unless we
are prepared to modify the rudimentary quantum theory and relativity upon
which the Conway-Kochen argument hinges, we must abandon our contextual
hidden variable hypothesis.

Purported implications. Conway & Kochen attempt to argue that loss of the
conjectured contextual hidden variables that were intended to be the “agents of
determinism” means that the responses of Alice/Bob’s particles are
“indeterminate—not dictated/pre-determined by any event or combination of
events in their respective backward lightcones”—just as were the decisions
Alice/Bob made when selecting from among their experimental options. Here
their argument eludes me, for the event that gave birth to the particles (and
placed them in the entangled singlet state) certainly lies in the intersection
of their backward lightcones, and is, according to orthodox quantum theory,
responsible for the way they respond to spin-squared measurements.

But if we accept Conway/Kochen’s characterization of what they have
accomplished—and accept as well their tacit assumption that what holds for
twinned spin-one particles holds universally, for quantum-systems-in-general—
then we understand the force of their claim that “to the extent that we can
attribute ‘free will’ to the decisions Alice/Bob made during the execution of
their measurements, so also must we attribute ‘free will’ to the response of those
particles to measurement .” Unembarrassed by their use of anthropocentric
language (and protected by their insistence that they do not claim particles to be
sentient!) Conway/Kochen go on to assert that particles—since unconstrained
by determinism—“do not know how they will respond to measurement until
they have done so.”

Does that remark add to one’s understanding of (say) the quantum
mechanical two-slit experiment? Hardly! But it is at least consonant with
J. A. Wheeler’s paraphrase of Bohr’s position, which was that “no [quantum]
phenomenon is a phenomenon until it is a recorded (observed) phenomenon.”
In this regard, Conway & Kochen have come freshly upon an insight that can be
traced to near the beginnings of quantum mechancis: that quantum events truly
are as indeterministic as they seem—precisely the assertion to which Einstein
took such strenuous objection.

Commentary. Philosophers have been arguing for centuries about the meaning
of “causality,” and have taken occasional exception to the uses physicists make
of that notion: “output does not precede input,” “information transfer is
confined to the interior of the lightcone.” Physicists themselves have been forced
to venture into philosophical deep water when considering the
paradoxial physics of tachyons, writing papers with titles like “The tachyonic
antitelephone.”6 The closely interrelated concepts of “freedom,” “free will,”

6 G. A. Benford, D. L. Book & W. A. Newcomb, Phys. Rev. D 2, 263 (1970).
The subject raises possible complications that Conway & Kochen have been
content to set aside.
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“determinism” have also contributed to the generation of a vast, contentiously
inconclusive literature. Some of Conway/Kochen’s philosophical colleagues at
Princeton have reportedly expressed dismay at the “casual. . .uninformed” use
they have made of the free will concept. Other philosophers, in a tradition
stretching back through Hume to Hobbs, have been at pains to promote the
“compatibilist” view that free will is not inconsistent with strict determinism—
contrary to what Conway & Kochen tactily presume.7

Gerard ’t Hooft has, for about a decade, been exploring the possibility that
quantum mechanics is emergent from a fully deterministic physics operative at
the Planck scale.8 ’t Hooft accepts Conway/Kochen’s argument, but denies
their conclusion, since he considers himself forced by his determinism to deny
that Alice/Bob have free will.

The Free Will Theorem has been criticised on more technical grounds by
Roderich Tumulka9 and by Sheldon Goldstein et al.10 The latter purport to
demonstrate, for example, that “for stochastic models [which Conway/Kochen
summarily dismiss from consideration] their conclusion is not correct, while for
deterministic models it is not new.”

The EPR/Bohm argumentexperiment proceeds from the assumption that
spin-one-half particles have been placed in a special entangled state (the singlet
state). Bell makes a similar assumption en route to demonstrated quantum
violation of the Bell inequality (demonstrated impossibility of non-contextual
hidden variables). It is interesting that the Kochen-Specker argument arrives
at the same conclusion without the presumption of state specialization. On
the other hand, to demolish the contextual hidden variable hypothesis Conway
& Kochen once again do have to place their particles in a specialized (singlet)
state. Very recently, G. Kirchmair et al11 have provided state-independent
experimental confirmation of the correctness of the Kochen-Specker proof that
non-contextual hidden variables cannot account for the quantum mechanical
facts. Perhaps it will not be long before someone reports state-independent
experimental evidence that the contextual hidden variable hypothesis is
untenable.

7 For a philosopher’s careful discussion of the Free Will Theorem, visit
http://philosophy.ucsd.edu/faculty/wuthrich/PhilPhys/MenonTarun2009Man
FreeeWillThm.pdf.

8 See “How does God play dice: (Pre)Determinism at the Planck scale,”
arXiv:hep-th/0104219v1 25 Apr 2001 or “Determinism beneath quantum
mechanics,” arXiv:quant-ph/0212095v1 16 Dec 2002.

9 “Comment on ‘The Free Will Theorem,’ ” http://www.maphy.uni-
tuebingen.de/members/rotu/papers/freewilly.pdf.

10 “What does the Free Will Theorem actually prove?” http://math.rutgers.
edu/∼oldstein/papers/fwtGTTZ.pdf.

11 “State-independent experimental test of quantum contextuality,” arXiv:
0904.1655v2 [quant-ph] 5 May 2009. The experiment exploited recent
developments in “non-demolition” technology.


