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TWO-STATE SYSTEMS

Introduction. Relative to some/any discretely indexed orthonormal basis
{
|n)

}
the abstract Schrödinger equation H |ψ) = i� ∂

∂t |ψ) can be represented∑
n

(m|H |n)(n|ψ) = i� ∂
∂t (m|ψ)

which can be notated
∑
n

Hmnψn = i� ∂
∂tψm

or again H |ψ〉 = i� ∂
∂t |ψ〉

We found it to be the fundamental commutation relation [x , p ] = i� I which
forced the matrices/vectors thus encountered to be ∞ -dimensional. If we are
willing
• to live without continuous spectra (therefore without x)
• to live without analogs/implications of the fundamental commutator

then it becomes possible to contemplate “toy quantum theories” in which all
matrices/vectors are finite-dimensional. One loses some physics, it need hardly
be said, but surprisingly much of genuine physical interest does survive. And
one gains the advantage of sharpened analytical power: “finite-dimensional
quantum mechanics” provides a methodological laboratory in which, not
infrequently, the essentials of complicated computational procedures can be
exposed with closed-form transparency. Finally, the toy theory serves to identify
some unanticipated formal links—permitting ideas to flow back and forth—
between quantum mechanics and other branches of physics.

Here we will carry the technique to the limit: we will look to “2-dimensional
quantum mechanics.” The theory preserves the linearity that dominates the
full -blown theory, and is of the least-possible size in which it is possible for the
effects of non-commutivity to become manifest.
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We have seen that quantum mechanics can be portrayed as a theory in
which
• states are represented by self-adjoint linear operators ρρρ ;
• motion is generated by self-adjoint linear operators H ;
• measurement devices are represented by self-adjoint linear operators A .

In orthonormal representation those self-adjoint operators become Hermitian
matrices

R = ‖(m|ρρρ |n)‖ , H = ‖(m|H |n)‖ and A = ‖(m|A |n)‖

which in the toy theory become 2×2. We begin, therefore, with review of the

Properties of 2x2 Hermitian matrices. The most general such matrix can be
described1

H =
(
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
(1)

and contains a total of 4 adjustable real parameters. Evidently

tr H = 2h0 and det H = h2
0 − h2

1 − h2
2 − h2

3 (2)

so we have

det( H− λ I ) = λ2 − 2h0λ + (h2
0 − h2

1 − h2
2 − h2

3)
= λ2 − (tr H )λ + det H (3)

By the Cayley-Hamilton theorem

H
2 − (tr H )·H + (det H ) · I = O (4)

from which it follows that

H
–1 = (det H )–1

[
(tr H )· I−H

]
(5)

= (h2
0 − h2

1 − h2
2 − h2

3)
–1

(
h0 − h3 h1 + ih2

h1 − ih2 h0 + h3

)

Returning to (1), we can write

H = h0σσ0 + h1σσ1 + h2σσ2 + h3σσ3 (6)

where σσ0 ≡ I and

σσ1 ≡
(

0 1
1 0

)
, σσ2 ≡

(
0 −i
i 0

)
, σσ3 ≡

(
1 0
0 −1

)
(7)

1 Here H is intended to evoke not Hamilton but Hermite . . . though, since we
are developing what is in effect the theory of quaternions (the invention closest
to Hamilton’s heart), the former evocation would not be totally inappropriate.
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are the familiar “Pauli matrices.” The linearly independent σσ-matrices span
the 4-dimensional real vector space of 2×2 Hermitian matrices H , in which they
comprise an algebraically convenient basis. Each of the three Pauli matrices is
traceless, Hermitian and has detσσ = −1; their multiplicative properties can be
summarized

σσ2
1 = σσ2

2 = σσ2
3 = I (8.1)

σσ1σσ2 = i σσ3 = −σσ2σσ1

σσ2σσ3 = i σσ1 = −σσ3σσ2

σσ3σσ1 = i σσ2 = −σσ1σσ3


 (8.2)

Equations (8) imply (and can be recovered from) the multiplication formula2

AB = (a0σσ0 + a1σσ1 + a2σσ2 + a3σσ3)(b0σσ0 + b1σσ1 + b2σσ2 + b3σσ3)

= (a0b0 + a1b1 + a2b2 + a3b3)σσ0

+ (a0b1 + a1b0 + ia2b3 − ia3b2)σσ1

+ (a0b2 + a2b0 + ia3b1 − ia1b3)σσ2

+ (a0b3 + a3b0 + ia1b2 − ia2b1)σσ3

= (a0b0 + aaa···bbb)σσ0 + (a0bbb + b0aaa + i aaa×bbb)···σσ (9)

If we agree to write
A = a0σσ0 + aaa···σσ
Ā = a0σσ0 − aaa···σσ

}
(10)

then (9) supplies
Ā A = (det A) I (11)

Also
[A ,B ] = 2i(aaa×bbb)···σσ (12)

which conforms to the general principle that

[ hermitian, hermitian ] = i(hermitian) = antihermitian

From (12) it becomes explicitly clear that/why

[ X ,P ] = i� I is impossible

and that A and B will commute if and only if aaa ∼ bbb :

[ A ,B ] = O requires B = αA + β I (13)

2 This is the formula that had Hamilton so excited, and which inspired Gibbs
to say “Let’s just define the ··· and × products, and be done with it!” Whence
the 3-vector algebra of the elementary physics books.
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Looking back again to (3), we see that

if H is traceless (h0 = 0) then det H = −hhh···hhh

If, moreover, hhh is a unit vector (hhh···hhh = 1) then det( H− λI ) = λ2 − 1 = 0. The
eigenvalues of such a matrix are ±1. In particular, the eigenvalues of each of
the three Pauli matrices are ±1. The eigenvalues of H in the general case (1)
are

h± = (h0±h) (14)

h ≡
√
hhh···hhh = (h2

1 + h2
2 + h2

3)
1
2 � 0

Evidently spectral degeneracy requires hhh···hhh = 0, so occurs only in the cases
H ∼ I .

To simplify discussion of the associated eigenvectors we write H = h0 I + lh
with lh ≡ hhh···σσ and on the supposition that lh|h±〉 = ±h|h±〉 obtain

H |h±〉 = (h0 ± h) |h±〉

In short, the spectrum of H is displaced relative to that of lh, but they share the
same eigenvectors: the eigenvectors of H must therefore be h0 -independent,
and could more easily be computed from lh. And for the purposes of that
computation on can without loss of generality assume hhh to be a unit vector,
which proves convenient. We look, therefore, to the solution of(

h3 h1 − ih2

h1 + ih2 h3

)
|h±〉 = ±|h±〉

and, on the assumption that hhh···hhh = 1 and 1±h3 
= 0 , readily obtain normalized
eigenvectors

|h±〉 =




√
1±h3

2

±
√

1
2(1±h3)

(h1 + ih2)


· eiα : α arbitrary (15.1)

To mechanize compliance with the condition h2
1 + h2

2 = 1− h2
3 let us write

h1 =
√

1− h2
3 cosφ

h2 =
√

1− h2
3 sinφ

We then have

|h±〉 =




√
1±h3

2

±
√

1∓h3
2 eiφ


 (15.2)
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Finally we set h3 = cos θ and obtain3

|h+〉 =


 cos 1

2θ

+ sin 1
2θ · eiφ


 , |h−〉 =


 sin 1

2θ

− cos 1
2θ · eiφ


 (15.3)

Our objective in the manipulations which led to (15.2)/(15.3) was to escape
the force of the circumstance that (15.1) becomes meanless when 1 ± h3 = 0 .
Working now most directly from (15.2),4 we find

σσ1|1±〉 = ±1 · |1±〉 with |1+〉 = 1√
2

(
1

+1

)
, |1−〉 = 1√

2

(
1
−1

)

σσ2|2±〉 = ±1 · |2±〉 with |2+〉 = 1√
2

(
1
+i

)
, |2−〉 = 1√

2

(
1
−i

)

σσ3|3±〉 = ±1 · |3±〉 with |3+〉 =
(

1
0

)
, |3−〉 =

(
0
−1

)

Observables. Let the Hermitian matrix

a0 I + aaa···σσ ≡ A represent an A -meter
âaa···σσ ≡ A0 represent an A0-meter

where âaa is a unit vector, and where aaa = kâaa . As we’ve seen, A0 and A have
share the same population of eigenvectors, but the spectrum of the latter is got
by dilating/shifting the spectrum of the other:

A0|a〉 = a|a〉 ⇐⇒ A |a〉 = (a0 + ka)|a〉

To say the same thing in more physical terms: the A0-meter and the A -meter
function identically, but the former is calibrated to read a = ±1, the latter to
read a0±k . Both are “two-state devices.” In the interest of simplicity we agree
henceforth to use only A0-meters, but to drop the decorative hat and 0, writing

A = a1σσ1 + a2σσ2 + a3σσ3 with aaa a unit vector

We find ourselves now in position to associate

A-meters ←→ points on unit sphere a2
1 + a2

2 + a2
3 = 1

and from the spherical coordinates of such a point, as introduced by

a1 = sin θ cosφ
a2 = sin θ sinφ
a3 = cos θ


 (16)

3 Compare Griffiths, p. 160, whose conventions I have contrived to mimic.

4 Set h0 = 0 and hhh =


 1

0
0


, else


 0

1
0


, else


 0

0
1


.
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to be able to read off, by (15.3), explicit descriptions of the output states |a±〉
characteristic of the device. And, in terms of those states—as an instance of
A =

∫
|a da (a|—to have

A = |a+〉〈a+| − |a−〉〈a−| (17)

It is interesting to notice what has happened to the concept of “physical
dimension.” We recognize a physical parameter t with the dimensionality of
“time,” which we read from the “clock on the wall,” not from the printed
output of a “meter” as here construed: time we are prepared to place in a class
by itself . Turning to the things we measure with meters, we might be inclinded
to say that we are
• “measuring a variable with the dimension [a]” as a way of announcing our

intention to use an A-meter;
• “measuring a variable with the dimension [b]” as a way of announcing our

intention to use a B-meter; etc.
To adopt such practice would be to assign distinct physical dimension to every
point on the aaa-sphere. Which would be fine and natural if we possessed only a
limited collection of meters.

Made attractive by the circumstance that they are addressable (if not, at
the moment, by us) are some of the questions which now arise:
• Under what conditions (i.e., equipped with what minimal collection of

meters P , Q, R . . . ) does it become feasible for us to “play scientist”—to
expect to find reproducible functional relationships fi(p̄, q̄, r̄, . . .) = 0
among the numbers produced by our experiments?
• Under what conditions does a “dimensional analysis” become available as

a guide to the construction of such relationships?
• How—and with what guarantee of uniqueness—would you work backwards

from the “classical” relationships fi(p, q, r, . . .) = 0 I hand you (or that you
deduce from experiment) to the quantum theory from which I obtained
them?

We gain the impression that two-state theory might profitably be pressed into
service as a laboratory for the philosophy of science, and are not
surprised to learn that the laboratory has in fact had occasional users . . . though
most of them (with names like Einstein, Pololsky, Rosen, Bell, . . . ) have not
been card-carrying philosophers.

The expected result of presenting a quantum system in (pure) state |ψ) to
an A-meter can be represented

|ψ) −→ A-meter −→
{
|a+) with probability |(a+|ψ)|2
|a−) with probability |(a−|ψ)|2

The meter registers + or − to report which projection has, in the particular
instance, actually taken place.

Suppose—downstream from the A -meter—we have installed an “|a+)-gate”
which passes |a+) states, but excludes |a−) states. And—downstream from the
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gate—a B -meter. Activity of the latter can be represented

|a+) −→ B -meter −→
{
|b+) with probability |(b+|a+)|2
|b−) with probability |(b−|a+)|2

The B -meter will act disruptively upon the |a+)-state (the output of the gated
A -meter) unless |a+)—an eigenstate of A—is an eigenstate also of B (i.e., unless
|a+) = |b+) else |b−)). In the former case bbb = +aaa : the B -meter is in reality a
second A -meter and, even if the gate were removed, would always replicate the
result yielded by the first A -meter: it is on those grounds alone that we can
assert that the first meter actually measured something ! In the alternative case
bbb = −aaa : the B -meter acts like an A -meter in which the read-out device has
been cross-wired, so that + reads − and vice versa. In the former case B = A ;
in the latter case B = A

–1 . . . in which regard it must be emphasized that A
–1

does not act like an A-meter run backwards (does not “un-project”).

Recent remarks can be further clarified if one retreats for a moment to
general quantum theory . . .where one encounters the

B acts non-disruptively upon the states
output by A if and only if [A , B ] = 0

(though B may be non-disruptive of a subset of the A -states under weaker
conditions). Looking back in this light to (12) we see that

[ A ,B ] = O requires aaa ∼ bbb

Which if aaa and bbb are both unit vectors requires bbb = ±aaa .

We recently had occasion to draw casually upon the concept of a “gate.”
How do we construct/represent such a device, a “filter transparent to some
specified state |γ)”? Two (ultimately equivalent) procedures recommend
themselves. If |γ) is represented

|γ〉 =
(
γ1

γ2

)

then we have only to construct the projection operator G ≡ |γ)(γ|— represented

G ≡ |γ〉〈γ| =
(
γ1γ

∗
1 γ1γ

∗
2

γ2γ
∗
1 γ2γ

∗
2

)
(18.1)

—to achieve the desired result, for clearly G |γ〉 = |γ〉. In some circumstances
it is, however, convenient—drawing upon (15.3)—to use

(
γ1

γ2

)
=


 cos 1

2θ

sin 1
2θ · eiφ


 eiα
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to ascribe “spherical coordinates” (and an overall phase) to |γ〉, and to use
those coordinates in (16) to construct a unit 3-vector ggg. This we do because
we know H = h0I + hggg···σσ to be the Hermitian matrix which

assigns eigenvalue h0 + h to eigenvector |γ〉
assigns eigenvalue h0 − h to eigenvector |γ〉⊥

and which annihilates |γ〉⊥ if h0 − h = 0. Setting h0 = h = 1
2 we are led to the

representation

G = 1
2 (I + ggg···σσ) = 1

2

(
1 + g3 g1 − ig2

g1 + ig2 1− g3

)
(18.2)

which does not much resemble (18.1), but can be shown to be equivalent . . . to
one another and to the “spectral representation”

G = |γ〉 · 1 · 〈γ|+ |γ〉⊥· 0 ·⊥〈γ|

I end this discussion with a question, which I must, for the moment, be
content to leave hanging in the air: How does one represent a measuring device
of imperfect resolution?

Equivalent mixtures. To describe a statistical mixture of states |u), |v) and |w)5

we write ρρρ = |u)pu(u|+ |v)pv(v|+ |w)pw(w|, represented

R = |u〉pu〈u|+ |v〉pv〈v|+ |w〉pw〈w| (19.1)

with pu + pv + pw = 1. The 2×2 matrix R is Hermitian, therefore possesses
real eigenvalues r1, r2 and orthonormal eigenvectors |r1〉, |r2〉 in terms of which
it can be displayed

R = |r1〉r1〈r1|+ |r2〉r2〈r2| (19.2)

with trR = r1 + r2 = pu + pv + pw = 1. We may consider (19.2) to describe
a mixture of states—and “eigenmixture” distinct from but equivalent to the
original mixture. The right sides of (19) express a “distinction without a
difference:” R (rather: the ρρρ which it represents) is the object of physical
significance, and its display as a “mixture” is, to a large degree, arbitrary.

From this fundamental fact arises a technical problem: Describe the set of
equivalent mixtures. This is a problem which, in two-state theory, admits of
illuminating geometrical solution, which I now describe.6

5 I mix three states to emphasize that no orthogonality assumption has been
made. You may consider any number of arbitrarily selected additional states
to be present in the mixture with (in this case) zero probability.

6 It was at 2:55 p.m. on  May , as a senior oral on which we both sat was
breaking up, that I posed the problem to Tom Wieting. He instantly outlined
the argument I am about to present, and by 5:00 p.m., when we emerged from
our next orals, he had ironed out all the wrinkles and written a sketch.
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We have learned to associate unit complex 2-vectors |a〉 with unit real
2-vectors aaa , and in terms of the latter to describe the matrix

|a〉〈a| = 1
2

{
I + aaa···σσ

}
(20)

which projects onto |a〉. We are in position, therefore, to associate the right
side of (19.1) with a trio of weighted points

point uuu with weight pu
point vvv with weight pv
point www with weight pw

marked on the surface of the 3-ball. Bringing (20) to (19.1) we have

R = 1
2

{
(pu + pv + pw) I + (puuuu + pvvvv + pwwww)···σσ

}
= 1

2

{
I + rrr···σσ

}
(21)

rrr ≡ puuuu + pvvvv + pwwww = r r̂rr

Introducing r1 and r2 by

r1 + r2 = 1
r1 − r2 = r

}
=⇒

{
r1 = 1

2 (1 + r)
r2 = 1

2 (1− r)

we have

R = r1 · 1
2

{
I + r̂rr···σσ

}
+ r2 · 1

2

{
I− r̂rr···σσ

}
(22)

= weighted sum of orthogonal projection matrices

If P+≡ 1
2

{
I + r̂rr···σσ

}
projects onto |r1〉 then P− projects onto |r2〉 ≡ |r1〉⊥ , the

orthogonal complement of |r1〉: in (22) we have recovered precisely (19.2).

We are brought thus to the conclusion that density matrices R ,R′,R′′, . . .

describe physically indistinguishable equivalent mixtures if and only if, when
written in the form (21), they share the same “center of mass” vector rrr=

∑
pir̂rri.

And to help us comprehend the meaning of membership in the equivalence
set

{
R ,R′,R′′, . . .

}
we have now this geometrical imagery: take a string of

unit length, attach one end to the origin, the other end to a point rrr (r � 1)
and think of the class of “string curves” 000 → rrr . To each corresponds an
R. Obviously

{
R ,R′,R′′, . . .

}
contains only a single element if r = 1, and—in

some difficult-to-quantify sense contains increasing more elements as r becomes
smaller.

Though some celebrated physicists have been known to assert (mistakenly)
the uniqueness of quantum mixtures, modern authors—if they mention the
point at all—tend to have it right,7 but to remain unaware of Wieting’s pretty

7 See L. E. Ballentine, Quantum Mechanics (), §2–3; K. Blum, Density
Matrix Theory and Applications (2nd edition ), p. 16.
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r
u

v

w

Figure 1: At left, three weighted points on the unit 3-ball represent
a mixture of three quantum states. On the right a dimension has
been discarded: the unit 3-ball has become the unit circle, on which
weighted points

{
uuu, vvv,www

}
are deposited. Constructions indicate how

one might compute the center of mass of
{
uuu, vvv

}
, then of

{
uuu, vvv,www

}
to determine finally the location of the rrr which enters into the
“eigenrepresentation” (21) of the mixture. The figure illustrates the
procedure—due to Wieting—that takes one from (19.1) to (22).

demonstration of the point. Thus far, neither Weiting nor I have been able
to discover, for ourselves or in the literature, a generalized construction that
extends to N -state systems with N > 2.

It becomes fairly natural at this point to introduce a

“degree of mixedness” Q ≡ 1− r =
{

0 for pure states
1 for maximally mixed states states

This idea is (as will emerge) closely analogous to the “degree of polarization”
introduced by George Stokes (and even more closely analogous to what might
be called the “degree of depolarization”). But it proves to be often more useful
to associate an “entropy” with quantum mixtures (as von Neumann was the
first to do), writing

“entropy” S ≡ −r1 log r1 − r2 log r2 (23.1)

Using limx↓0 x log x = limx↑1 x log x = 0 we have

S =
{

0 for pure states
log 2 for maximally mixed states

It is fairly easy to show, as a general proposition, that if P is a projection
matrix then

log(αI + β P) = (logα) · I + (1 + β/α) · P
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and, on this basis, that (working from (21)) it makes sense to write8

S = −tr
{
R log R

}
(23.2)

= −tr
{
ρρρ log ρρρ

}
more abstractly/generally

Measurement on mixtures, with devices of imperfect resolution. When a mixture

Rin = |r1〉r1〈r1|+ |r2〉r2〈r2|

is presented to an ideal device

A = |a1〉a1〈a1|+ |a2〉a2〈a2|

the output (displayed as a density matrix) will be the

pure state |a1〉〈a1| with probability 〈a1|Rin |a1〉 = tr
{
|a1〉〈a1|Rin

}
pure state |a2〉〈a2| with probability 〈a2|Rin |a2〉 = tr

{
|a2〉〈a2|Rin

}
but one will not know which was, in that event, the case until after the meter
has been read.9 The entropy of the mixture representative of the system S

has (unless the system was already in a pure state) decreased (the mixture has
become “less disordered”), from

−r1 log r1 − r2 log r2 −→ 0

. . .which we interpret to mean that, by that individual act of measurement, we
have

gained “information” = −r1 log r1 − r2 log r2

Let us, as at (21), again write

Rin = 1
2

{
I + r1σσ1 + r2σσ2 + r3σσ3

}
to describe the pre-measurement state of S. By any of a variety of appropriately
contrived sequences of measurements one can discover the values of r1, r2, r3. I
describe what is certainly the simplest such procedure: the Hermitian matrices
σσ1, σσ2, σσ3 are, by quick implication of (7) and (8), tracewise orthogonal and
individually traceless:

trσσiσσj = 2 δij and trσσi = 0 (24)

8 See p. 57 in “Ellipsometry: Stokes’ parameters & related constructs in
optics & classical/quantum mechanics” ().

9 The number 〈A〉 = tr AR refers to the average of the meter readings
obtained in a long experimemtal run.
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Look upon the σσ matrices as representatives of “Pauli meters” (which come
in three different flavors), and observe that

si ≡ 〈σσσi 〉 = tr
{
σσi R

}
= ri (25)

We can, in particular, look to

s2 ≡ s2
1 + s2

2 + s2
3 � 1 (26)

to discover whether or not S was in a pure state.

Suppose it were, and that had resurrected (from (15.3)) a former notation

|ψ〉 =


 cos 1

2θ

sin 1
2θ · eiφ


 (27)

to describe that state. We would then have

s1 = 〈ψ|σσ1|ψ〉 = sin θ cosφ
s2 = 〈ψ|σσ2|ψ〉 = sin θ sinφ
s3 = 〈ψ|σσ3|ψ〉 = cos θ


 (28.1)

which are familiar from (16), and which in the impure case are replaced by

s1 = s sin θ cosφ
s2 = s sin θ sinφ : 0 � s � 1
s3 = s cos θ


 (28.2)

We are doing 2-state quantum mechanics, but have at this point reproduced
the essentials of pretty mathematics introduced into the theory of polarized light
beams by Stokes (), Poincaré (), Clark Jones () and others.10

Consider now the action of an imperfect measurement device—a device
with the property that its output remains to some degree uncertain. We may
be tempted to say of the output that it is a “statistical distribution” of states
(as might be described by positing some distribution function on the surface
of the 3-ball), but the phrase conveys a more detailed meaning that we can
justify (“misplaced concreteness” again): we can assert that the device delivers
a mixed state, but not how that mixture has been concocted.

I propose—tentatively, in the absence (so far as I am aware) of any well
established theory—to model imperfect A-meters as otherwise “perfect” meters
speak with fuzzy imprecision: when

A =
∫
|a) da (a | : imperfect

10 See E. Hecht, Optics (2nd edition ), §8.12; C. Brosseau, Fundamentals
of Polarized Light: A Statistical Optics Approach () or electrodynamics
(), pp. 344–370 for details.



Theory of measurement, revisited 13

looks at ρρρ in and announces “a0” it signifies that it has constructed not the pure
state ρρρout = |a0)(a0| characteristic of a perfect meter, but an a0-centered mixed
state . . . something like

ρρρout(a0) =
∫
|a) p(a0; a)da (a| with 〈a〉 =

∫
p(a0; a)a da = a0 (29)

Formally, by this account, the action of an imperfect device is nearly but not
quite that of a projection operator, and A by itself provides only a partial
characterization of the device: full description of an imperfect A -meter requires
presentation of the duplex data

{
A ; p(a0, a)

}
.11

The probability that an imperfect A -meter will, upon examination of ρρρ in ,
announce “a0” is (we postulate) given by

P (a0) = Z –1 ·
∫

(a|ρρρ in|a)p(a0; a) da = tr
{
ρρρ in ρρρout(a0)

}
(30.1)

where
Z = Z(ρρρ in) ≡

∫
tr

{
ρρρ in ρρρout(a0)

}
da0 (30.2)

is a normalization factor, introduced to insure that
∫
P (a0) da0 = 1. For perfect

meters the statements (30) assume the simpler form

P (a0) =Z –1 · (a0|ρρρ in|a0)
Z = Z(ρρρ in) = 1 : (allρρρ in)

}
(31)

If we use a perfect device then we find that prompt remeasurement after
a measurement has yielded a0 will again yield a0 with certainty. Not so if we
are less well equipped, for prompt remeasurement after our device has yielded
a0 will yield a1 with conditional probability

P (a0; a1) =Z –1·
∫

(a|ρρρout(a0)|a)p(a1; a) da = Z –1 tr
{
ρρρout(a0)ρρρout(a1)

}
(32)

Z = Z(ρρρout(a0))

11 It is perhaps most natural (but certainly not necessary) to assume

p(a0; a) = 1
ε
√

2π
exp

{
− 1

2

[a−a0
ε

]2} ≡ g(a− a0; ε)

as was suggested on p. 51 of Chapter 0. In this instance p(a; a0) depends
upon its arguments only through their difference, which we may expect to be a
commonplace simplification. In any event, we expect to have

p(a0; a) −→ δ(a− a0)

as instrumental precision is increased.
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An imperfect instrument examines a mixture ρρρ in =
∫
|r)pr(r| dr with

entropy

S in ≡ S(ρρρ in) = −
∫

pr log pr dr (33.1)

announces “a0,” and delivers the mixture (29), of which the entropy is

Sout ≡ S(ρρρout(a0)) = −
∫

p(a0; a) log p(a0; a) da � 0 (33.2)

(with equality if and only if the instrument is in fact perfect). From

information gained = S in − Sout � S in (34)

we see that the information gained by imperfect measurement is always less
than would have been gained by perfect measurement. It is entirely possible
for information to be lost rather than gained : in such cases we would have a
“device” all right, but one hardly worthy of being called a “measuring device.”12

If ρρρ in referred in fact to a pure state (output of some prior perfect device), then
measurement with an imperfect device always serves to mess things up (i.e., to
produce mixtures of increased entropy, with negative information gain).

I suspect that one would be able to argue in quantitative detail to the effect
that all measurement devices are imperfect . For example: one does not expect
to be able to measure position with accuracy greater than ∆x ∼ �/mc, where
m is the mass of the least massive particle (electron?). Or angular momentum
with accuracy much greater than ∆7 ∼ �. But I can cite no source in which
such argument is undertaken with serious intent, and would be inclined to read
with reservation any such paper not written by an experimentalist of the first
rank.

Let’s look to see what the general theory sketched above has to say when
applied to two-state systems. To describe ρρρ in we have learned at (21/22) to
write

R in = 1
2

{
I + rrr···σσ

}
(35)

= r1 · 1
2

{
I + r̂rr···σσ

}
+ r2 · 1

2

{
I− r̂rr···σσ

}
A similar construction A = a1 · 1

2

{
I + âaa···σσ

}
+ a2 · 1

2

{
I− âaa···σσ

}
is available to

describe the Hermitian matrix representative of an ideal device, though in that
context we can/will exercise the option to set a1 = +1 and a2 = −1, giving

A = âaa···σσ (36)

12 Optical depolarizers provide a case in point.
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r

Figure 2: The figure at upper left stands as a reminder that the
other figures refer to diametrically placed points on spheres, not
circles. At upper right is a representation of the description (35) of
the mixture R in to be examined by the imperfect device. When the
device announces “±” it burps out the mixture (37) represented by
the figure at lower left/right.

Those two ideas become fused when we undertake to describe ρρρout(±) :

Rout(+) = p(+ ,+) · 1
2

{
I + âaa···σσ

}
+ p(+ ,−) · 1

2

{
I− âaa···σσ

}
= 1

2

{
I + aaa+···σσ

}
Rout(−) = p(− ,+) · 1

2

{
I + âaa···σσ

}
+ p(− ,−) · 1

2

{
I− âaa···σσ

}
= 1

2

{
I + aaa−···σσ

}




(37)

where aaa+ ≡ [ p(+ ,+) − p(+ ,−) ]âaa , and aaa− is defined similarly. If, in an effort
to reduce notational clutter, we implement p(• ,+) + p(• ,−) = 1 by writing

p(+ ,+) = 1− ε+ ; p(+ ,−) = ε+

p(− ,+) = ε− ; p(− ,−) = 1− ε−
(38.1)

then (37) becomes

Rout(+) = 1
2

{
I + (1− 2ε+)âaa···σσ

}
Rout(−) = 1

2

{
I− (1− 2ε−)âaa···σσ

} (38.2)
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The entropy of those mixtures is given by expressions of the form

S(ε) = −(1− ε) log(1− ε)− ε log ε

= ε(1− log ε)− 1
2ε

2 + · · ·

and the mixtures become pure (operation of the instrument becomes perfect)
as ε ↓ 0.

Presentation of R in to our imperfect device yields the response “± ” with
probabilities13

P (±) = Z –1 · tr
{
R in Rout(±)

}
= Z –1 · 1

2 (1 + rrr···aaa±) (39.1)

where aaa+ ≡ +(1− 2ε+)âaa , aaa− ≡ −(1− 2ε−)âaa and

Z = 1 + 1
2 rrr···(aaa+ + aaa−) = 1− (ε+ − ε−)rrr···âaa (39.2)

Motivated again by a desire to reduce notational clutter, I restrict my attention
henceforth to the case in which the device is of “symmetric design,” in the sense
that ε+ = ε− ≡ ε : then aaa+ = −aaa− = aaa ≡ (1− 2ε)âaa and Z = 1.

A “ + ” response is confirmed by prompt (but imperfect) remeasurement
with probability

P (+ ,+) = tr
{
Rout(+) Rout(+)

}
= 1

2 (1 + aaa···aaa) (40.1)

and contradicted with probability

P (+ ,−) = 1
2 (1− aaa···aaa) (40.2)

and the same can be said of P (− ,−) and P (− ,+). In ε-notation the preceding
equations read

P (+) = 1
2

{
1 + (1− 2ε) rrr···âaa

}
P (+ ,+) = 1

2

{
1 + (1− 2ε)2

}
P (+ ,−) = 1

2

{
1− (1− 2ε)2

}
P (−) = 1

2

{
1− (1− 2ε) rrr···âaa

}
P (− ,−) = 1

2

{
1 + (1− 2ε)2

}
P (− ,+) = 1

2

{
1− (1− 2ε)2

}




(41)

13 See again (30). Essential use will be made here of the “traceless tracewise
orthogonality” properties (24) of the σσ-matrices.
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In the special case ε = 0 of an ideal instrument we on this basis have

P (+) = 1
2

{
1 + rrr···âaa

}
P (+ ,+) = 1
P (+ ,−) = 0

P (−) = 1
2

{
1− rrr···âaa

}
P (− ,−) = 1
P (− ,+) = 0




(confirmation is certain) while in the rather more interesting case of a “perfectly
worthless instrument” (ε = 1

2 ) we have

P (+) = 1
2

P (+ ,+) = 1
2

P (− ,+) = 1
2

P (−) = 1
2

P (− ,−) = 1
2

P (+ ,−) = 1
2




—irrespective of any/all properties of the state (mixture) being examined.

The discussion could be extended: one might inquire into the moments of
imperfectly measure data, the correlations that arise when a second imperfect
device B is brought into play . . .but this is not the place. While the little
“theory of imperfect measurement” sketched above might (in my view) be held
to be intuitively/formally quite satisfying, I must stress that the question Does
it conform to the observed facts of the matter? remains open. We have interest,
therefore, in the results of experiments designed to expose its defects (if any).
The main purpose of the discussion was to underscore the proposition that the
proper formal repository for the concept of “quantum state” is (not |ψ) but)ρρρ
. . . and that it is a meaningless frivolity to ask for the “identities of the states
present in a mixture:” no specific answer to the latter question is objectively
defensible, and none is needed to do practical computation.

Dynamics of two-state systems. I have recently had occasion to speak of
prompt remeasurement, where “prompt” means “before the system has had an
opportunity to move dynamically away from its measured state.” I turn now
from the projective/irreversible state-adjustments we call “measurements” to
the Hamiltonian-driven unitary (and therefore formally reversible) adjustments
which we imagine to be taking place between observations.

Assume the Hamiltonian to be time-independent. We then have

|ψ)0 −→ |ψ)t = U(t)|ψ)0 with U(t) ≡ exp
{
− i

�
Ht

}
(42)
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or again (and more generally)

ρρρ0 −→ ρρρ t = U(t)ρρρ0 U –1(t) (43)

In orthonormal representation the propagator U(t) becomes a unitary matrix

U(t) = exp
{
− i

�
H t

}
(44)

which in two-state theory is 2×2. The Hermitian Hamiltonian matrix can be
described (see again (6))

H = h0σσ0 + h1σσ1 + h2σσ2 + h3σσ3 = �(ω0 I + ωĥhh···σσ) (45)

and (see again (14)) has eigenvalues

E± = �(ω0 ± ω) (46)

Writing

U(t) = e−iω0t · S(t) with S(t) ≡ exp
{
− iω lht

}
(47)

lh ≡ ĥhh···σσ

we observe14 that, because lh is traceless, S(t) is unimodular: det S(t) = 1 . And
because, by (2) and (4), det lh = −1 we have lh2 = I . Therefore

S(t) = cosh(−iωt) · I + sinh(−iωt) · lh (48)
= cosωt · I− i sinωt · lh

whence finally
U(t) = e−iω0t

{
cosωt · I− i sinωt · lh

}
(49)

So the description of |ψ〉t = U(t)|ψ〉0 has been reduced to a matter of
simple matrix multiplication, and becomes even simpler if one works in terms
of the energy eigenbasis, defined

H |±〉 = �(ω0 ± ω)|±〉 (50)

For then

|ψ〉0 = |+〉〈+|ψ〉0 + |−〉〈−|ψ〉0
↓ (51)

|ψ〉t = |+〉e−i(ω0+ω) t〈+|ψ〉0 + |−〉e−i(ω0−ω) t〈−|ψ〉0

The |+〉 and |−〉 components of |ψ〉0 simply “buzz,” each with its own frequency.

14 Use det M = etr log M.
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But it is perhaps more illuminating—certainly more comprehensive—to
look to the motion of

R t = 1
2

{
I + rrr(t)···σσ

}
(52)

to which, we notice, ω0 makes no contribution. The problem before us is to
extract useful information from

R t = S(t) R0S
–1(t) (53)

=
{

cosωt · I− i sinωt · lh
}

1
2

{
I + rrr(0)···σσ

}{
cosωt · I + i sinωt · lh

}
There are many ways to proceed. We might proceed from the observation that
when t is small the preceding equation reads (if we allow ourselves temporary
liberty to write rrr for rrr(0) )

Rτ = R0 − 1
2 iωτ [ ĥhh···σσ, rrr···σσ ] + · · ·

By (12) [ ĥhh···σσ, rrr···σσ ] = 2i(ĥhh× rrr)···σσ so we have

Rτ = R0 + ωτ(ĥhh× rrr)···σσ + · · ·

which can be expressed

rrr(τ) =





 1 0 0

0 1 0
0 0 1


 + 2ωτ


 0 −ĥ3 ĥ2

ĥ3 0 −ĥ1

−ĥ2 ĥ1 0


 + · · ·


 rrr(0)

and clearly speaks of rotation about the ĥhh -axis, through the doubled angle 2ωτ .
Iteration leads to

U(t) = e−iω0t· exp
{
−iω t

(
ĥ3 ĥ1 − iĥ2

ĥ1 + iĥ2 −ĥ3

)}
� (54)

exp


2ωt


 0 −ĥ3 ĥ2

ĥ3 0 −ĥ1

−ĥ2 ĥ1 0







where the 2× 2 top matrix either hits |ψ〉 (pure case) or wraps around R,
while the 3× 3 bottom matrix hits rrr (either case) to achieve the same effect.
The top matrix is unitary . . . the bottom matrix rotational. Altenatively, we
might—having resolved rrr into components parallel/perpendicular to ĥhh

rrr = rrr‖ + rrr⊥ with

{
rrr‖ = (rrr···ĥhh)ĥhh
rrr⊥ = rrr − rrr‖

—write

R = R‖ + R⊥ with

{
R‖ = 1

2 ( I + rrr‖···σσ)

R⊥ = 1
2 ( rrr⊥···σσ)
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Figure 3: The long (green) arrow is set by the Hamiltonian, and
points fore/aft to points representative of the energy eigenstates.
The shorter (red) arrow describes the mixture (pure if the arrow is
of unit length, otherwise an impure mixture of non-zero entropy),
and twirls around the Hamiltonian axis with angular frequency 2ω.

and ask what i� d
dtR = [ H ,R ] says about the motion of R‖ and R⊥. We are led

promptly to the statements

d
dtrrr‖ = 000
d
dtrrr⊥ = 2ωĥhh× rrr⊥

}
(55)

By either line of argument, we are led to the motion illustrated in the figure.
Several points now merit comment:

The motion of |ψ〉 depends, according to (49), on ω0, but the motion of
the density matrix—whether one works from (54) or from (55)—depends only
on

ω = 1
2�

{
E+ − E−

}
∼ energy difference

from which we infer that ω0 is (at least in the absence of relativity/gravitation)
not physically observable/meaningful. But this is hardly surprising, since in
classical physics one can always assign any desired value to the energy reference
level, and only energy differences matter. Let us agree henceforth to

set ω0 = 0

At time t = 1
2τ = π/ω the unitary matrix U(t) has, according to (49)

(from which the unphysical eiω0t-factor has now been discarded), advanced
through half a period, and we have U( 1

2τ) = − I : the original state vector has
reappeared, but with reversed sign. The density matrix is, however, assembled
quadratically from state vectors, and insensitive to sign flips: it has returned
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to its original value R( 1
2τ) = + I and the rrr vector in Figure 3—which moves

with doubled frequency—has made one complete tour of the cone. What we
have encountered here once again is the celebrated double-valuedness of the
spinor representations of the 3-dimensional rotation group O(3). But here the
encounter is peculiar in one particular: usually (as historicaly) one starts from
a system which exhibits overt O(3) symmetry, and is led to the spinors as a
discovered resource. But here O(3) has emerged as a “hidden symmetry” latent
in the simplicity of the two-state model . . .pretty nearly the reverse of the more
common progression.

The manifest dynamical constancy of the length of the rrr vector—made
obvious by the figure—can be read as an illustration of what we may take to
be a general proposition:

Quantum dynamical motion is isentropic: d
dtS = 0 (56)

Two-state theory as a theory of spin systems. From (8.2) we have

[σσ1, σσ2 ] = 2iσσ3

[σσ2, σσ3 ] = 2iσσ1

[σσ3, σσ1 ] = 2iσσ2

which, if we introduce dimensioned Hermitian matrices Sk ≡ �

2σσk, can be
expressed

[ S1,S2 ] = i� S3

[ S2,S3 ] = i� S1

[ S3,S1 ] = i� S2


 (57)

But these are precisely the commutation relations which at (1–50) were found to
be characteristic of the angular momentum operators L1, L2, L3. The algebraic
quantum theory of angular momentum15 derives much of its shape from the
circumstance that the set

{
L1, L2, L3

}
is—though closed with respect to

commutation—not multiplicatively closed , in the sense that it is not possible to
write L iL j =

∑
k ci

k
j Lk. In this important sense the S matrices—for which

one by (8.2) has equations of form S1 S2 = i�

2 S3—are distinguished by the
relative richness of their algebraic properties.

In the general theory one constructs

L2 ≡ L2
1 + L2

2 + L2
3 (58.1)

and shows (i) that

[ L2, L2
1 ] = [ L2, L2

1 ] = [ L2, L2
1 ] = 0 (58.2)

15 For a good brief account see Griffiths, pp. 146–149.
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and (ii) that

if L2|7〉 = λ|7〉 then λ = �
27(7 + 1) : 7 = 0, 1

2 , 1,
3
2 , 2,

5
2 , . . .

On the other hand, in S theory it follows from (8.1) that

S
2 ≡ S

2
1 + S

2
2 + S

2
3 = 3 ·

(
�

2

)2
I = �

2 1
2 ( 1

2 + 1) I (59)

which enforces 7 = 1
2 and informs us that in fact every 2-component |ψ〉 is an

eigenvector of the “total spin” matrix S
2 . We therefore expect S

2 to playh an
insignificant role in the theory of spin 1

2 systems; the operators of interest are{
S1,S2,S3

}
, each of which has eigenvalues ± 1

2�.

If we had had spin on our minds then the (most general) Hamiltonian
introduced at (45) might have been notated H = 1

2 (ω0 I + ωĥhh···S) or again—if
we exercise our option to set ω0 = 0, and adopt Griffiths’ physically motivated
notation16—

H = −γBBB ···S
We would then interpret dynamical results obtained in the preceding section
as having to do with the “precession of an electron in an impressed magnetic
field.”17 Good physics, nothing wrong with that . . . and its gratifying to learn
that “toy quantum mechanics” has something to say about the real world. The
point I would emphasize, however, is that one is under no obligation to adopt
spin language when thinking/talking about two-state systems: such language
is always available, but sometimes it is liberating to put it out of mind.

Suppose one had two (or more) two-state systems, and wanted to assemble
from them a composite system (a “molecule,” a “system of spins” or “spin
system”); how would one proceed?

If a particle m were moving quantum mechanically in one dimension we
might write |ψ) to indicate the state of the particle, and would find it natural
to introduce an operator x responsive to the question “Where is the particle?”
Then ψ(x) = (x|ψ) becomes available as a descriptor of the particle’s location. If
the system were comprised of two particles m1 and m2 then we would have need
of a pair of operators, x1 and x2, responsive to the questions “Where is m1?”
and “Where is m2?” On the presumption that those are compatable questions
(formally, that [x1, x2] = 0) it becomes possible to introduce a doubly-indexed
orthonormal basis

{
|x1, x2)

}
and obtain ψ(x1, x2) = (x1, x2|ψ). The operator

x1 has a degenerate spectrum, and so does x2:

x1|x1, x2) = x1|x1, x2)
x2|x1, x2) = x2|x1, x2)

16 See Griffiths, p. 160.
17 For classical discussion of the same problem—presented as an exercise in

Poisson bracket algebra, so as to look “maximally quantum mechanical”—see
pp. 276–279 in classical mechanics ().
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But when announces its own individual eigenvalue they collaboratively identify a
unique element |x1, x2) of the composite basis. In general, therefore, we expect
to write

ψ(x1, x2), not (say)
(
ψ1(x1)
ψ2(x2)

)
As a point of mathematical technique we may undertake to write something
like

ψ(x1, x2) =
∑
m,n

ϕm(x1)ϕn(x2) (59.1)

and do not, in general, expect to see the sum reduce to a single term. If,
however, m1 and m2 were on opposite sides of the room—were physically
non-interactive, though mentally conjoined—then we would expect to have

↓
= ψ1(x1) · ψ1(x2)

(59.2)

In the latter circumstance one has

joint distribution = (x1-distribution) · (x1-distribution) (60)

and says of x1 and x2 that they independent random variables—uncorrelated—
that knowledge of the value of one conveys no information concerning the value
of the other. It is with those general observations in mind that we return to
consideration of how composite systems S = S1×S2×· · · might be assembled
from 2-state elements.

While the state of an individual 2-state element might (with respect to
some arbitrarily selected orthonormal basis) be described

|ψ〉 =
(
ψ1

ψ2

)
(61.1)

it could equally well (as we have seen) be described

R =
(
ψ1

ψ2

)
(ψ∗

1 ψ∗
2 ) =

(
ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

)
: pure state (61.2)

↓

=
(
R11 R12

R21 R22

)
: mixed state (61.3)

The (latently more general) density matrix language is, as will emerge, uniquely
well suited to the work before us, but its efficient management requires some
familiarity with an elementary mathematical device which I now digress to
describe:18

18 The following material has been excerpted from Chapter 3 of my Classical
Theory of Fields (), where it appears on pp. 32–33.
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The “Kronecker product” (sometimes called the “direct product”) of
• an m× n matrix A onto
• a p× q matrix B

is the mp× nq matrix defined19

A⊗ B ≡ ‖aijB‖ (62)

Manipulation of expressions involving Kronecker products is accomplished by
appeal to general statements such as the following:

k(A⊗ B) = (kA)⊗ B = A⊗ (kB) (63.1)

(A + B)⊗ C = A⊗ C + B⊗ C

A⊗ (B + C) = A⊗ B + A⊗ C

}
(63.2)

A⊗ (B⊗ C) = (A⊗ B)⊗ C ≡ A⊗ B⊗ C (63.3)

(A⊗ B)T = A
T ⊗ B

T (63.4)

tr(A⊗ B) = trA · trB (63.5)

—all of which are valid except when meaningless.20 Less obviously (but often
very usefully)

(A⊗ B)(C⊗ D) = AC⊗ BD if
{

A and C are m×m
B and D are n× n

(63.6)

from which one can extract21

A⊗ B = (A⊗ In)(Im⊗ B) (63.7)

det(A⊗ B) = (det A)n(det B)m (63.8)

(A⊗ B) –1 = A
–1 ⊗ B

–1 (63.9)

Here I have used Im to designate the m×m identity matrix; when the dimension
is obvious from the context I will, in the future, allow myself to omit the
subscript. The identities (63) are proven in each case by direct computation,
and their great power will soon become evident.

I will write S = S1 ⊗ S2 when I intend the non-interactive “mental”
conjoin of two (or more) systems, and S1×S2 when elements of the composite

19 The alternative definition A ⊗ B ≡ ‖A bij‖ gives rise to a “mirror image”
of the standard theory. Good discussions can be found in E. P. Wigner, Group
Theory and its Application to the Quantum Theory of Atomic Spectra (),
Chapter 2; P. Lancaster, Theory of Matrices (), §8.2; Richard Bellman,
Introduction to Matrix Analysis (2nd edition ), Chapter 12, §§5–13.

20 Recall that one cannot add matrices unless they are co-dimensional, and
does not speak of the trace of a matrix unless it is square.

21 See Lancaster32 for the detailed arguments.
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system are permitted to interact physically. To describe the state of S1 ⊗S2

I propose to write
RRR = R1 ⊗ R2 : 4×4 (64)

in connection with which we notice that (by (63.5) and (61.2))

trRRR = tr R1 · tr R2 =

{
(ψ1ψ

∗
1 + ψ2ψ

∗
2)1· (ψ1ψ

∗
1 + ψ2ψ

∗
2)2 = 1 : pure case

1 · 1 = 1 even in the mixed case

Drawing upon (63.6) we have

( A1⊗ I )RRR ( B1⊗ I ) = A1R1B1⊗ R2

( I ⊗ A2)RRR ( I⊗ B2) = R1⊗ A2R2B2

which tells us in general terms how to construct
• operators which act upon S1 but ignore S2;
• operators which ignore S1 but act upon S2.

We note also in this connection that if A and B are 2× 2 Hermitian, then
(by (63.4)) A⊗ B is necessarily 4×4 Hermitian.

It becomes natural, in the light of preceding remarks, to introduce

SSSk ≡ ( Sk⊗ I ) + ( I⊗ Sk) : k = 1, 2, 3 (65.1)

as the operator which assigns “net k-component of spin” to the composite
system, and to call

SSS
2 ≡ SSS

2
1 + SSS

2
2 + SSS

2
3 (65.2)

the “total spin operator.” From (63.6) follows the useful identity[
(A⊗ B), (C⊗ D)

]
= (AC⊗ BD) +

{
− (CA⊗ BD) + (CA⊗ BD)

}
− (CA⊗ DB)

= ( [ A ,C ]⊗ BD) + (CA⊗ [ B ,D ]) (66)

with the aid of which we quickly obtain

[ SSS1,SSS2 ] = ([ S1,S2]⊗ I ) + ( I⊗ [ S1,S2]) = i� SSS3 , etc. (67)

Further computation

SSS
2 =

∑
k

[
( Sk⊗ I ) + ( I⊗ Sk)

]2
=

∑
k

[
( S

2
k⊗ I ) + 2( Sk⊗ Sk) + ( I⊗ S

2
k)

]
= ( S

2⊗ I ) + 2
∑
k

( Sk⊗ Sk) + ( I⊗ S
2 )

gives (recall (59))

= 3
2�

2( I⊗ I ) + 2
∑
k

( Sk⊗ Sk) (68)
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and with this information, drawing again upon (66) and the commutation
relations (57), we are led to

[ SSS2 ,SSS1] = [ SSS2 ,SSS2] = [ SSS2 ,SSS3] = OOO (69)

Retreating again to generalities for a moment: in density matrix language
the eigenvalue problem A |a〉 = a |a〉 becomes A R = aR, and requires that the
mixture contain only states that share the eigenvalue a (but puts no restriction
on the relative weights assigned to those states, provided they sum to unity).
If, in particular, the eigenvalue a is non-degenerate then necessarily R = |a〉〈a|
and R

2 = R . Building on this foundation, we find that

(A⊗ B)( R1 ⊗ R2) = λ( R1 ⊗ R2)
�

A R1 = aR1 and B R2 = bR2

(70.1)

and supplies λ = ab. And we find that[
(A⊗ I ) + ( I⊗ B)

]
( R1 ⊗ R2) = λ( R1 ⊗ R2) (70.1)

imposes similar requirements upon R1 and R2 , while supplying λ = a + b.

Let us take SSS
2 and (say) SSS3 to be simultaneous observables. Then

SSS3 RRR = µRRR entails S3R1 = m1R1 and S3R2 = m2R2

We know from previous work (see again (59) ) that m1,m2 = ± 1
2�, and will

call the associated “eigendensities” R+ and R−. So the eigenvalues of SSS3 can
be described

µ = m1 + m2 : ranges on
{
− �, 0,+�

}
and the associated eigendensities of the composite system become

RRR−1 = R−⊗ R− : RRR 0 =
{

R+⊗ R−

R−⊗ R+
: RRR+1 = R+⊗ R+

It is the degeneracy of RRR 0 we ask SSS
2 to resolve. In an effort to avoid confusing

“formalism within formalism” I adopt an “experimentally computational”
approach to the later problem:

We elect to work in the standard Pauli representation (7), and therefore
have

S1 = �

2

(
0 1
1 0

)
, S2 = �

2

(
0 −i
i 0

)
, S3 = �

2

(
1 0
0 −1

)
(71)

The normalized eigenvectors of S3 are
(

1
0

)
and

(
0
1

)
, with respective eigenvalues

±�

2 , so we have

R+ =
(

1 0
0 0

)
and R+ =

(
0 0
0 1

)
(72)
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which, quite obviously, comprise a complete set of 2×2 orthogonal projection
matrices. Building on this information, we obtain

RRR+1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

R−⊗ R+ =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 ,

R+⊗ R− =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




RRR−1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1







(73)

(once again: a complete set of orthogonal projection matrices, but active now on
4-space). The names RRR±1 will be motivated in a moment. Basic spin matrices
for the composite system are

SSS1 = �

2




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 , SSS2 = �

2




0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0




(74)

SSS3 = �




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1




One verifies by direct matrix calculation that these possess the commutation
properties alleged at (67), and that

SSS3 RRR+1 = +� RRR+1

SSS3 RRR 0 = OOO : RRR0 = any linear combination of
{

R+⊗ R−

R−⊗ R+
(75)

SSS3 RRR−1 = −� RRR−1

Finally we compute

SSS
2 ≡ SSS

2
1 + SSS

2
2 + SSS

2
3 = �

2




2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 (76)

and observe that both RRR+1 and RRR−1 satisfy

SSS
2
RRR = 7(7 + 1)�2

RRR with 7 = 1 (77)

To say the same thing another way: RRR+1 and RRR−1 project onto simultaneous
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eigenvectors

|1,+1〉 ≡




1
0
0
0


 ≡ ↑↑ and |1,−1〉 ≡




0
0
0
1


 ≡ ↓↓ (78.1)

of SSS3 and SSS
2. To obtain the final pair of such vectors we must diagonalize the

central block
(

1 1
1 1

)
of the matrix described at (76); introducing

UUU ≡




1 0 0 0
0 1√

2
1√
2

0
0 −1√

2
1√
2

0
0 0 0 1


 : 45◦ rotational unitary

we obtain

UUU
–1

SSS
2
UUU =




2 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2




and so, in |7,m〉-notation and the frequently encountered22 “arrow notation,”
we are led to write

|0, 0〉 = UUU




0
1
0
0


 = 1√

2
(↑↓ − ↓↑) , |1, 0〉 = UUU




0
0
1
0


 = 1√

2
(↑↓ + ↓↑) (78.2)

The methods described above could (I presume) be extended to construct
• a theory of N -element composites of n-state systems;
• a general account of the addition of angular momentum.

We look now to results which arise when measurements are performed on
composite systems. Continuing to work in the basis introduced at (73), we
observe that the “spectral resolution” of (76) can be expressed

SSS
2 = 2�

2
PPPtriplet + 0�

2
PPPsinglet (79.1)

where

PPPtriplet ≡




1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1


 , PPPsinglet ≡




0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0


 (79.2)

comprise a complete orthogonal set of projection operators; the spectrum of
PPPtriplet can be described

{
0, 13

}
so that matrix projects onto a 3-space, while

22 Griffiths, §4.4.3.
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PPPsinglet, with spectrum
{
03, 1

}
, projects onto the orthogonal 1-space. When an

(ideal) SSS
2-meter looks to a composite system in state

|ψ〉in =




ψ1

ψ2

ψ3

ψ4




it announces “S2 = 2�
2 ” and creates

|ψ〉out = (normalization factor) · PPPtriplet |ψ〉in ∼




ψ1

(ψ2 + ψ3)/2
(ψ2 + ψ3)/2

ψ4


 (80.1)

with probability |out〈ψ|ψ〉in|2. Else it announces “S2 = 0�
2 ” and creates

|ψ〉out = (normalization factor) · PPPsinglet |ψ〉in ∼




0
(ψ2 − ψ3)/2
(ψ3 − ψ2)/2

0


 (80.2)

with complementary probability. Similarly, the spectral resolution of SSS3 —
which represents the action of a meter which looks to the S3 of the entire
composite system—can, by (74), be displayed

SSS3 = (+1�)PPP+1 + (0�)PPP0 + (−1�)PPP−1 (81)

with

PPP+1 ≡




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , PPP0 ≡




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , PPP−1 ≡




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




and supports an identical set of measurement-theoretic remarks. But if the
meter looks only to the S3 value of the #1 element then we must write

SSS
#1
3 ≡ S3 ⊗ I = 1

2�




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 = (+ 1

2�)PPP
#1
+ + (− 1

2�)PPP
#1
− (82.1)

with

PPP
#1
+ ≡




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , PPP

#1
− ≡




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



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while if the meter looks only to the #2 element we have

SSS
#2
3 ≡ I3 ⊗ S3 = 1

2�




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 = (+1

2�)PPP
#2
+ + (− 1

2�)PPP
#2
− (82.2)

with

PPP
#2
+ ≡




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , PPP

#2
− ≡




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1




Suppose, now, that an SSS
2-meter does respond “S2 = 2�

2 ” when presented
with some |ψ〉in. The prepared state will, as we have seen, have then the form
characteristic of triplet states:23

|ψ〉out =




a
b
b
c


 : a2 + 2b2 + c2 = 1 (83)

Let that state be presented to a downstream SSS
#1
3 -meter, which will either

respond “S#1
3 = + 1

2� ” and construct |ψ〉out/out = 1√
a2+b2




a
b
0
0




or

respond “S#1
3 = − 1

2� ” and construct |ψ〉out/out = 1√
b2+c2




0
0
b
c




with

probability given by


 out〈ψ|PPP#1

+ |ψ〉out = a2 + b2 in the former case

out〈ψ|PPP#1
− |ψ〉out = b2 + c2 in the latter case

Now let a second S3-meter be placed downstream from the first. It it looks to
subsystem #1 it will yield results which are simply confirmatory. But if it looks
to subsystem #2 it will yield results which are conditional upon the ± recorded

23 In the following discussion—simply to reduce notational clutter—I will
allow myself to write (for instance) a2 when |a|2 is intended. Maximal simplicity
is achieved by setting a = b = c = 1

2 .
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by the first meter . If the first meter were disconnected then the second meter
would respond

“+” with probability out〈ψ|PPP#2
+ |ψ〉out = a2 + b2

“−” with probability out〈ψ|PPP#2
− |ψ〉out = b2 + c2

}
(84.1)

(which is to say: it would, owing to the special design (83) of triplet states, yield
data identical to that of the first meter , though it would prepare a different
population of states), but when the first meter is reconnected the expected
responses of the second meter (which looks now to |ψ〉out/out states) might be
described

if “+” then
{

“+” with probability a2/(a2 + b2)
“−” with probability b2/(a2 + b2)

if “−” then
{

“+” with probability b2/(b2 + c2)
“−” with probability c2/(b2 + c2)


 (84.2)

The point is that equations (84)—both of which describe activity of the second
meter (under distinct experimental protocols)—differ from one another.

The situation becomes more starkly dramatic when the initial S2-meter
announces that it has prepared a singlet state. The characteristic form of such
a state was seen at (80.2) to be

|ψ〉out =




0
+1√

2
−1√

2

0


 (85)

Arguing as before, find that either downstream S3-meter, acting alone, (and
though they prepare distinct populations of states) yields data which can be
described

“+” with probability 1
2

“−” with probability 1
2

}
(86.1)

but that when both meters are on-line the second meter gives

if “+” then
{

“+” with zero probability
“−” with certainty

if “−” then
{

“+” with certainty
“−” with zero probability


 (86.2)

The two meters are in this case perfectly correlated : the first meter-reading
(whatever it may have turned out to be) caused—is that the right word?—the
second meter-reading to be redundant/pre-determined.

We have come here upon a result which the many eminent physicists have
found profoundly/disturbingly puzzling . . .which has caused a sea of ink to be
spilled, and provoked occasionally strident controversy . . . and has stimulated
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recent experimental work the results of which have been viewed with amazement
by all participants in the dispute (if dispute there be). The points at issue
continue to shake the foundations of quantum mechanics, and stem from the
observation that . . .

Elements S1 and S2 of the composite system may be very far apart at
the moment we undertake to do measurement on S1. The idea that “news”
of the outcome of that measurement should be transmitted instantaneously to
S2 (faster than allowed by relativity) struck Einstein and his collaborators24

as absurd. One might
• argue that since we have worked non-relativistically we should not be

surprised to find ourselves in conflict with relativity,25 or
• attempt to construct a theory of the “delayed onset of correlation”

but such effort would be rendered pointless by observations which establish
convincingly that the onset of correlation is in fact instantaneous.26 One might
on this evidence attempt to argue that the correlation was actually present
from the outset, supported by “hidden variables” of which quantum theory
takes no account, and that the theory is on this account “incomplete.” This

24 A. Einstein, Boris Podolsky & Nathan Rosen, “Can quantum-mechanical
description of physical reality be considered complete?” Phys. Rev. 47, 777
(1935). This classic paper (only four pages long) is reprinted in J. A. Wheeler &
W. H. Zurek, Quantum Theory and Measurement (), together with many
of the papers (by Bohr, Schrödinger, others) which it stimulated. EPR spoke
of composite systems in general terms, but the idea of looking to 2-state spin
systems is due to David Bohm, §§15–19 in Chapter 22 of Quantum Theory
(), reprinted as “The paradox of Einstein, Rosen & Podolsky” in Wheeler
& Zurek.

25 In fact our toy theory has so few moving parts that it is difficult to say
whether it is or isn’t relativistic.

26 A. Aspect, P. Grangier & G. Roger, “Experimental test of Bell’s
inequalities using time-varying analyzers,” Phys. Rev. Letters 49, 1804 (1982).
The most recent results in that tradition are reported in W. Tittel, J. Brendel,
H. Zbinden & N. Grsin, “Violation of Bell inequalities by photons more than
10km apart,” Phys. Rev. Letters 81, 3563 (1998) and G. Wiehs, T. Jennewein,
C. Simon, H. Weinfurter & A. Zeilinger, “Violation of Bell’s inequality under
strict Einstein locality conditions,” Phys. Rev. Letters 81, 5039 (1992). For a
very nice brief review of the present status and significance of work in this field,
see A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189
(1999), which bears this subhead:

‘The experimental violation of Bell’s inequalities confirms that a pair
of entangled photons separated by hundreds of metres must be
considered a single non-separable object—it is impossible to assign local
physical reality to each photon.”

Aspect remarks that the best available data lies 30 standard deviations away
from the possibility that it might be in error.
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hypothesis has added urgency to an already entrenched tradition in which the
objective is to construct a deterministic “hidden variable theory” which would
“explain” why the quantum mechanical world seems so profoundly random.27

But this work, while it has taught us much of a formal nature, has thus far
served only to sharpen the evidence on which we may hold orthodox quantum
mechanics to be correct as it stands. “Instantaneous correlation” has come
to be widely interpreted as an indication that quantum mechanics is, in some
unsettling sense, non-local . . . that the states of the components of composite
systems—even components so far removed from one another as to be physically
non-interactive—remain (in Schrödinger’s phrase) “entangled.”

In the early/mid-’s John Bell—drawing inspiration jointly from a
lecture presented at CERN (where he and I had recently served as colleagues
in the Theory Division) by J. M. Jauch28 and from his own prior exposure
to EPR/Bohm and to Max Born’s account29 of “von Neumann’s proof” that,
subject to a few natural assumptions, hidden variable theories are impossible—
looked again into the hidden variable question, as it relates to the EPR paradox.
He was able to construct a hidden variable account of the quantum physics
of simple spin systems, such as we have considered, and confronted then the
question: Which of von Neumann’s “natural assumptions” did his toy theory
violate? Bell argued that von Neumann’s “additivity postulate,” though it
appears to have the status almost of a “law of thought,” is susceptible to
physical challenge.30 Bell’s work culminated in the development (while he was
a visitor at Brandeis University) of “Bell’s inequality,” violation of which is
interpreted to speak in favor of orthodox quantum mechanics, and against the
existence of hidden variables. Einstein and Bohr had in the end to “agree to
disagree” . . . as one must in all philosophical disputes. Bell’s inequality made
it possible to resolve such issues by comparing one experimental number to
another, and transformed the quality of the discussion.

Dynamics of composite spin systems. To describe (in the Schrödinger picture)
the dynamics of a time-independent 2-state system we have only to write

H |ψ〉 = i� ∂
∂t |ψ〉

27 See F. J. Belinfante, A Survey of Hidden-Variable Theories ().
28 J. M. Jauch & C. Piron, “Can hidden variables be excluded in quantum

mechanics?” Helvetica Physica Acta 36, 827 (1963). Jauch was then at the
University of Geneva.

29 See p. 108 in Natural Philosophy of Cause & Chance ().
30 For a readable account of “von Neumann’s impossibility proof” (including

a list of his four postulates) see §7.4 in Max Jammer, The Philosophy of
Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical
Perspective (). In §7.7 one finds a good account also of Bell’s contribution.
Bell’s “On the Einstein-Podolsky-Rosen paradox” Physics 1, 195 (1964) and
“On the problem of hidden variables in quantum mechanics” Rev. Mod. Phys.
38, 447 (1966) reproduced both in Wheeler & Zurek24 and in his own collection
of essays, Speaking and unspeakable in quantum mechanics ().
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with H = �(ω0σσ0 + ωĥhh···σσ)

= �

(
ω0 + ωĥ3 ωĥ2 − iωĥ2

ωĥ2 + iωĥ2 ω0 − ωĥ3

)

=
∑
µ

hµσσµ

with consequences which have already been described in the equations (45–55)
which culminated in Figure 3. The motion of the associated density matrix is
described

H R− RH = i� ∂
∂tR

To describe the motion of elements of a non-interactive composite S1⊗S2

we might write
H1R1 − R1H1 = i� ∂

∂tR1

H2R2 − R2H2 = i� ∂
∂tR2

}
(87)

But if we introduce
RRR ≡ ( R1⊗ I ) + ( I⊗ R2)
HHH ≡ ( H1⊗ I ) + ( I⊗H2)

}
(88)

and notice that (after four of eight terms cancel)

[HHH ,RRR ] = ( [ H1 ,R1]⊗ I ) + ( I⊗ [ H2 ,R2]) (89)

t then equations (87) fuse, to become

HHHRRR−RRRHHH = i� ∂
∂tRR

R : matrices now 4×4 (90)

The problem now before us: How to describe motion of a composite system
S1×S2 in which the elements are not just “mentally” conjoined, but physically
—interactively?

The 2× 2 Hermitian matrices H1 and H2 are 4-parameter objects, and
when assembled yield a 4×4 Hermitian matrix of the specialized 7-parameter
design31

HHH =
∑
µ

{
(aµσσµ⊗ I ) + ( I⊗ bµσσµ)

}

=




a0+a3+b0+b3 b1−ib2 a1−ia2 0
b1+ib2 a0+a3+b0−b3 0 a1−ia2

a1+ia2 0 a0−a3+b0+b3 b1−ib2
0 a1+ia2 b1−ib2 a0−a3+b0−b3


 (91)

The most general 4×4 Hermitian HHH is, however, a 16-parameter object.

31 Seven (not eight) because a0 and b0 enter only in the fixed combination

a0 + b0 = 1
4 trHHH
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We are led by this remark to construct the 16 matrices

σσµν ≡ σσµ⊗ σσν (92)

The Pauli matrices themselves comprise a tracewise orthogonal basis in the
4-dimensional real vector space of 2×2 Hermitian matrices

1
2 trσσµσσα = δµα

and from this it follows that the σσµν-matrices are tracewise orthogonal

1
4 trσσµνσσαβ = 1

4 tr
{
σσµσσα ⊗ σσνσσβ

}
= 1

4 (trσσµσσα)(trσσνσσβ)
= δµαδνβ (93)

and therefore comprise a basis in the in the 16-dimensional real vector space of
4×4 Hermitian matrices. An arbitrary such matrix MMM can be developed

MMM =
3∑

µ,ν=0

mµνσσµν with mµν = 1
4 tr Mσσµν

For example: Mathematica (into which I have fed the σσµν-definitions32 )
informs us (and we confirm by inspection) that


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 = 1

4σσ00 + 1
4σσ03 + 1

4σσ30 + 1
4σσ33




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 = 1

2σσ01 + 1
2σσ31




0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 = 1

2σσ02 + 1
2σσ32

We observe that

1
4 trσσ00 = 1 : all other σσµν-matrices traceless (94)

It follows that we can assign 1
4 trHHH any value we please by appropriate placement

of the energy reference level; to set 1
4 trHHH = 0 is to impose the spectral condition

E1 + E2 + E3 + E4 = 0 (95)

32 I urge my reader to do the same. Take definitions of Pauli0, Pauli1,
etc. from (7), then use Outer[Times, Pauli0, Pauli0]//MatrixForm, etc.
to construct and examine the matrices σσ00, etc.
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We are in position now to provide an answer to our motivating question:
to achieve physical interaction between S1 and S2 we must introduce into ther
Hamiltonian terms which (while preserving Hermiticity) break the symmetry
with respect to the antidiagonal which is so strikingly evident in (91); we must,
in short, make an adjustment of the form

HHH −→ HHH + λVVV (96)

with

HHH = (a0 + b0)σσ00 + a1σσ10 + a2σσ20 + a3σσ30 + b1σσ01 + b2σσ02 + b3σσ03

VVV = c1σσ13 + c2σσ23 + d1σσ31 + d2σσ32 + e1σσ22 + e2σσ21 + f1σσ11 + f2σσ12 + gσσ33

=




g d1−id2 c1−ic2 −e1−ie2+f1−if2
d1+id2 −g e1−ie2+f1+if2 −c1+ic2
c1+ic2 e1+ie2+f1−if2 −g −d1+id2

−e1+ie2+f1−if2 −c1−ic2 −d1−id2 g


 (97)

where the g-term has been included not for symmetry breaking reasons, but
because otherwise σσ33 would be excluded from both lists.

Our recent discussion of EPR spin correlation inspires interest in the
conditions under which SSS

2 commutes with HHH and/or VVV . While a fancy
algebraic argument could be constructed (and would have the merit of being
representation independent), I have found it simplest to work from the
descriptions (76), (91) and (97) of the matrices in question; entrusting the
matridx multiplication to Mathematica, we are led to the conclusions that

[ SSS2,HHH ] = OOO if and only if a1 = b1, a2 = b2 & a3 = b3

[ SSS2,VVV ] = OOO if and only if c1 = d1, c2 = d2 & e2 = f2

}
(98)

The former condition amounts to the requirement that

H2 = H1 + (constant) · I

and has this interesting implication: every 2×2 H commutes with S
2 = 3

4�
2

I

(see again (59)), but the commutation of HHH with SSS
2 is strongly conditional.

Preservation of the prepared singlet state—assumed in our discussion of the
EPR phenomenon—therefore requires careful design of the over-all Hamiltonian
(including the interactive VVV component, which presumably is to be “turned off”
as S1 and S2 become separated.)

The special design attributed to HHH at (88) was attributed also to the joint
density matrix RRR , where it formalized the notion that S1⊗S2 is the “mental
composite” of its elements. If the system were “physically composite” we would
write S1×S2, and would expect the density matrix to contain additional terms:

RRRphysical = RRRmental + terms of the same design as VVV
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The added terms are traceless, so their inclusion would not compromise the
general requirement (imposed upon all density matrices) that trρ••ρρ••ρρ••ρ = 1.33 It is
in order to assess the significance of this result that I interpose here a reminder
concerning how meter-operation is described in density matrix language:

When a perfect meter A =
∑
|a)a(a| looks at a system in the mixed state

represented by the density matrix ρρρ in and announces “a0” (which it will do
with probability (a0|ρρρ in|a0) it constructs

ρρρout = |a0)(a0| =
|a0)(a0| · ρρρ in · |a0)(a0|
normalization factor

(99)

where the normalization factor is evidently just (a0|ρρρ in|a0) = tr
{
ρρρ in · |a0)(a0|

}
and can (because of a property of the trace, together with the fact that |a0)(a0|
is projective) be described

normalization factor = tr
{
|a0)(a0| · ρρρ in · |a0)(a0|

}

Accordingly . . .when at S 2-meter looks at ρ••ρρ••ρρ••ρ in and announces “singlet” it
constructs

ρ••ρρ••ρρ••ρout =
PPP singlet ρ••ρρ••ρρ••ρ in PPP singlet

trace
(100)

We were supplied with a description of PPP singlet at (79.2), and are in position
now to write

PPPsinglet =




0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0




= 1
4σσ00 − 1

4σσ11 − 1
4σσ22 − 1

4σσ33

= 1
4

{
III− (σσ1⊗ σσ1)− (σσ2⊗ σσ2)− (σσ3⊗ σσ3)

}
and to notice the the expression on the right displays “entangled terms”—terms
not present in

ρ••ρρ••ρρ••ρmental = q00σσ00 + r1σσ10 + r2σσ20 + r3σσ30 + s1σσ01 + s2σσ02 + s3σσ03

but present as honored citizens in

ρ••ρρ••ρρ••ρentangled = r1σσ13 + r2σσ23 + s1σσ31 + s2σσ32

+ u1σσ22 + u2σσ21 + v1σσ11 + v2σσ12 + w1σσ33

33 Preservation of compliance with the requirement that all eigenvalues be
non-negative seems, however, to be more difficult to insure.
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Mathematica informs us that

PPP singlet ρ••ρρ••ρρ••ρmental PPP singlet = q00 ·




0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0




i.e., that when ρ••ρρ••ρρ••ρmental is presented to an S 2-meter it constructs a singlet state
with probability q00. On the other hand,

PPP singlet ρ••ρρ••ρρ••ρentangled PPP singlet = −(v1 + u1 + w1) ·




0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0




The device then sees only the σσ11, σσ22 and σσ33 terms present in the entangled
mixture. This is a satisfying result, not at all surprising . . .but exposes—
more clearly than before—this important point: S 2-meters prepare (and some
Hamiltonians preserve) entangled states, and it is upon this fact that the EPR
phenomenon depends.

The preceding discussion exposes this deep (but, I suspect, attackable)
problem: How does it come about that—in the classical limit; under what other
circumstances?—the entangled component of the density matrix spontaneously
and effectively disappears from the physics of composite systems?

Two-state theory as a perturbation laboratory. Perturbation theories come in
many flavors. Some—some of those which assign a starring role to the wave
function ψ(x) = (x|ψ), and are therefore representation-specific—are presented
as exercises in the approximation theory of differential equations. Those have
no analogs in 2-state theory (where no operators have continuous spectra). But
many present exercises in matrix algebra, made complicated mainly by the
circumstance that the matrices in question are ∞ -dimensional. Those can be
modeled—sometimes advantageously, and variations of them explored—in the
toy context provided by 2-state theory, where most matrix-theoretic questions
can, after all, be settled by explicit/exact calculation.

Look in this light to the simplest version of time-independent perturbation
theory.34 We possess the solutions (eigenvalues and eigenvectors) of

H
0|n〉0 = E0

n |n〉0 : n = 1, 2

and seek solutions of

H |n〉 = En|n〉 : H = H
0 + λV

Elect to work in the unperturbed eigenbasis, where

H
0 =

(
E0

1 0
0 E0

2

)
, |1〉0 =

(
1
0

)
, |2〉0 =

(
0
1

)

34 The theory was first described by Schrödinger himself; See §6.1 in Griffiths.
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and where to describe the Hermitian perturbation term we will agree to write

V =
(

0〈1|V |1〉0 0〈1|V |2〉0
0〈2|V |1〉0 0〈2|V |2〉0

)
=

(
V1 U∗

U V2

)
The exact perturbed energy eigenvalues are easy enough to compute: from

det
(
E0

1 + λV1 − x λU∗

λU E0
2 + λV2 − x

)
= x2 − x

[
(E0

1 + λV1) + (E0
2 + λV2)

]
+

[
(E0

1 + λV1) · (E0
2 + λV2)− λ2U∗U

]
we have

x = 1
2

{[
(E0

1 +λV1)+(E0
2 +λV2)

]
±

√[
(E0

1 + λV1)− (E0
2 + λV2)

]2 + 4λ2U∗U

}
which upon expansion in powers of λ gives

E1 = E0
1 + λE1

1 + λ2E2
1 + · · ·

= E0
1 + λV1 − λ2 U∗U

E0
2 − E0

1

+ · · ·

E2 = E0
2 + λE1

2 + λ2E2
2 + · · ·

= E0
2 + λV2 + λ2 U∗U

E0
2 − E0

1

+ · · ·




(101.1)

when E0
1 < E0

2 , and

E1 = E0 + 1
2λ

{
(V1 + V2)−

√
(V1 − V2)2 + U∗U

}
+ no λ2 term + · · ·

E2 = E0 + 1
2λ

{
(V1 + V2) +

√
(V1 − V2)2 + U∗U

}
+ no λ2 term + · · ·




(101.2)

when the unperturbed spectrum is degenerate: E0
1 = E0

2 ≡ E0. Standard
perturbation theory leads to (101) by a hierarchical method{

· · ·
{{{

0th → 1st
}
→ 2nd

}
→ 3rd

}
→ · · ·

}
which—while it does not require one to develop/solve

det
(

H
0 + λV− E I

)
= 0

—does require one to serially construct
• all lower-order spectral corrections

{
E1
i , E

2
i , . . . , E

p−1
i

}
(all i) and

• all lower-order corrections
{
|i)1, |i)2, . . . , |i)p−1

}
(all i) to the eigenfunctions

before one undertakes to describe

Ep
n : pth correction to nth spectral value



40 Quantum theory of 2-state systems

Our visit to the “toy quantum lab” has on this occasion rewarded us with the
vision of an alternative—and potentially more efficient—3-step procedure:

step one Expand det
(

H
0 + λV− E I

)
in powers of λ.

step two Replace E with E0
n + λE1

n + E2
n + · · · and collect terms:

det = λD(E0
n, E

1
n) + λ2D(E0

n, E
1
n, E

2
n) + λ3D(E0

n, E
1
n, E

2
n, E

3
n) + · · ·

step three Solve serially.

The first step is accomplished by writing

det
(

H
0 + λV− E I

)
= det

(
H

0 − E I
)
· det

(
I + λM

)
M =

(
H

0 − E I
)

–1
V

and using
det

(
H

0 − E I
)

=
∏
i

(E0
i − E)

and a remarkable identity35 which deserves to be more widely known:

det
(

I + λM
)

= 1 + λ trM + 1
2!λ

2

∣∣∣∣ trM trM2

1 trM

∣∣∣∣ (102)

+ 1
3!λ

3

∣∣∣∣∣∣
trM trM2 trM3

1 trM trM2

0 2 trM

∣∣∣∣∣∣ + · · ·

I regret that I must, on this occasion, leave further details to the delight of the
curious reader.

Not to belabor the nearly obvious: in 2-state theory much can be done
exactly that is usually done only approximately, and by comparing those exact
procedures with various perturbation strategies36 one has an opportunity to
learn things . . . and perhaps to come upon new strategies that may offer
advantages in some situations.

It is in that spirit that we turn now to time-dependent perturbation theory ,
and to discussion of some the insight which in that important context can be
gained from play with our toy quantum theory. Standardly, one elects to work
in the Schrödinger picture, and writes

H0|n) = En|n) (103)

35 See classical dynamics (), Chapter 1, pp. 60–69 or “Applications of
an elegant formula due to V. F. Ivanoff” in collected seminars –.

36 Of which a fairly long and diverse (but by no means exhaustive) list
can be found in quantum perturbation theory & classical radiative
processes (/), pp. 1–50.
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(note the altered/simplified notation) to describe the information that is
assumed to be already in hand. The general solution of H0|ψ)t = i� ∂

∂t |ψ)t
can in this notation be developed

|ψ)t =
∑
n

|n)e−iωnt(n|ψ)0 : ωn ≡ En/�

=
∑
n

cn · e−iωnt|n) (104)

as a cn-weighted superposition of “harmonically buzzing eigenfunctions.” We
now tickle the Hamiltonian

H0 −→ H = H0 + λV(t) : t -dependent perturbation

and ask how the tickle alters the motion of |ψ)t. The question is standardly
approached by launching the coefficients cn into motion; one discovers by simple
argument that

|ψ)perturbed
t ≡

∑
n

cn(t) · e−iωnt|n) (105)

will (exactly!) satisfy {
H0 + λV(t)

}
|ψ) = i� ∂

∂t |ψ)

if and only if

i� d
dtcm(t) = λ

∑
n

(m|V(t)|n)ei (ωm−ωn)tcn(t) (106.1)

which we may express

i� d
dtccc = λW(t)ccc with ccc ≡




c1(t)
c2(t)

...
cn(t)

...


 (106.2)

Equivalently, we have the integral equation

ccc(t) = ccc0 − λ i
�

∫ t

0

W(τ) ccc(τ) dτ : ccc0 ≡ ccc(0) (107)

which upon iteration gives

ccc(t) =
{

I− λ i
�

∫ t

0

W(τ) dτ +
(
λ i

�

)2∫ t

0

∫ τ

0

W(τ)W(σ) dσdτ (108.1)

−
(
λ i

�

)3∫ t

0

∫ τ

0

∫ σ

0

W(τ)W(σ)W(ρ) dρdσdτ + · · ·
}
ccc0
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This exact result can be rendered more compactly (and, at the same time,
be made to fall more gracefully upon the eye: no staggered integrals) if we
introduce the “chronological product operator” P, which acts on products of
non-commuting objects A(t1)B(t2) · · ·Z(tn) by placing them in the order

(factor with latest argument) · (factor with next latest) · · · (earliest)

Thus

P
{
A(τ) B(σ)

}
≡

{
A(τ) B(σ) if τ > σ
B(σ) A(τ) if τ < σ

and we are enabled to write (note what’s happened to the upper limits)

ccc(t) =
{

I− λ i
�

∫ t

0

W(τ) dτ +
(
λ i

�

)2 1
2!

∫ t

0

∫ t

0

P
{
W(τ)W(σ)

}
dσdτ

−
(
λ i

�

)3 1
3!

∫ t

0

∫ t

0

∫ t

0

P
{
W(τ)W(σ)W(ρ)

}
dρdσdτ + · · ·

}
ccc0

≡ P exp
{
− λ i

�

∫ t

0

W(τ) dτ
}
ccc0 (108.2)

These last manipulations are merely cosmetic, but widely encountered.

The results achieved thus far are exact, but not terribly useful as they
stand except in favorable special cases.37 The theory becomes an approximation
scheme when, in service of enhanced tractability, one truncates the series . . .
which means that in place of (108.1) we write

ccc(t) =
{

I− λ i
�

∫ t

0

V(τ) dτ
}
ccc0 + · · · (109)

In the exact theory we had
∑

n |cn(t)|2 = 1, which is sacrificed when we
truncate. But the damage done is readily seen to be always of higher order
than the order in which we are working, so can be ignored.

In 2-dimensional quantum mechanics (104) becomes

|ψ〉t = c1e
−iω1t

(
1
0

)
+ c2e

−iω2t

(
0
1

)
37 Suppose, for example, that V(t) is in fact constant . Then (108.2) gives

ccc(t) = exp
{
− λ i

�
V t

}
ccc0

and we find ourselves doing what amounts to an odd kind of time-independent
perturbation theory. Ambitious readers will find that tracing the details which
lead “from here to there” is a rewarding challenge.
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with |c1|2 + |c2|2 = 1, the perturbed Hamiltonian acquires (in the unperturbed
eigenbasis) the representation

H = �

(
ω1 0
0 ω2

)
+ λ

(
V11(t) V12(t)
V21(t) V22(t)

)

and (106) reads

i� d
dt

(
c1(t)
c2(t)

)
= λ

(
V11(t) V12(t)e−iωt

V21(t)e+iωt V22(t)

) (
c1(t)
c2(t)

)

with ω ≡ ω2 − ω1 So in leading approximation we (according to (109)) have

(
c1(t)
c2(t)

)
=

{(
1 0
0 1

)
− λ i

�

∫ t

0

(
V11(τ) V12(τ)e−iωτ

V21(τ)e+iωτ V22(τ)

)
dτ

}(
c1(0)
c2(0)

)

which in the textbooks38 is, in a variety of special cases, used to illuminate a
remarkable variety of fundamental physical processes.

Textbook accounts of time-dependent perturbation theory tend to mask
its simple essence, which I would like to try here to expose. Let the Schrödinger
equation

{
H0 + λV(t)

}
|ψ) = i� ∂

∂t |ψ) be written

{
i� ∂

∂t − H0

}
|ψ) = λV(t)|ψ)

Use the shift rule
{
i� ∂

∂t − H0

}
= e−

i
�

H0t · i� ∂
∂t · e+

i
�

H0t to obtain

i� ∂
∂t |c) = λW(t)|c) (110.1)

with |c) ≡ e+
i
�

H0t|ψ) and W(t) ≡ e+
i
�

H0t·V(t)·e− i
�

H0t. From the latter definition
if follows that

i� ∂
∂t W = −[H0, W ] (110.2)

By unitary transformation we have moved from the Schrödinger picture to an
instance of the “interaction picture:”39 the unperturbed Hamiltonian moves
observables around, while the perturbation V (which by the adjustment just
mentioned has become W) moves the state vector. Our toy theory has (because
of the diagrammatic possibilities made thus available; see again Figure 3)
emphasized the importance of the density operator as a state-representation
device, and in that connection we notice that

C ≡ |c)(c| = e+
i
�

H0t · |ψ)(ψ| · e− i
�

H0t

38 See, for example (and especially), Griffiths’ Chapter 9, or L. E. Ballentine,
Quantum Mechanics (); L. I. Schiff, Quantum Mechanics (3rd edition ),
pp. 279–289.

39 See Chapter 0, p. 19, footnote 12.
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moves by the law
i� ∂

∂t C = λ[ W(t), C ]

which in 2×2 representation becomes

i� ∂
∂tC = λ[W(t),C ]

with
C = 1

2 (I + ĉcc···σσ)

This result places us in position to comprehend and depict the perturbed motion
of |ψ) by watching the motion of the real unit 3-vector ĉcc.

Abrupt /slow system adjustments. Dynamical systems—whether classical or
quantum mechanical—with time-dependent Hamiltonians are systems with
non-conserved energy

∂H/∂t 
= 0 =⇒ energy non-conservation

and it is that circumstance (loss of an “integral of the motion”) that makes
their theory relatively difficult to discuss, except in favorable special cases. We
have discussed a perturbation theory designed to handle cases of the form

Hamiltonian = constant term + small excursion term

We turn now to discussion of a pair of “favorable cases” which acquire their
tractability not from a presumption that the excursion is “small” (in typical
applications it won’t be) but from the presumption that

Hinitial −→ Hfinal is either
{

abrupt, or
very slow

The former is much easier to discuss. Look, for example, to the classical
oscillator

H(x, p; t) = 1
2mp2 + 1

2mω2(t)x2 with ω2(t) =
{
ω2

1 : t < 0
ω2

2 : t > 0

If the motion can be described x(t) = A cosω1t when t < 0 then necessarily
x(t) = A cosω2t when t > 0, the “splice condition” being x(0) = A, p(0) = 0.
The oscillator moves with conserved energy E1 = 1

2mω2
1A

2 at times prior to
t = 0, and with different conserved energy

E2 = E1 + 1
2m(ω2

2 − ω2
1)A2

at subsequent times.

Or, within the 2-dimensional toy theory, suppose it to be the case that

H(t) =


 �

{
ω01I + ω1ĥhh1 ···σσ

}
: t < 0

�
{
ω02I + ω2ĥhh2 ···σσ

}
: t > 0
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Then ψ̂ψψ—which comes to us from the density matrix |ψ〉〈ψ| = 1
2

{
I + ψ̂ψψ···σσ

}
—

twirls conically about
{
ĥhh1with angular frequency 2ω1 when t < 0
ĥhh2with angular frequency 2ω2 when t > 0

as illustrated in Figure 3. At negative times the density matrix has at every
instant the form |ψ〉〈ψ| = 1

2

{
I + (ĥhh1 cosα + ĝgg sinα)···σσ

}
with ĝgg ⊥ ĥhh1 , so the

expected energy, as computed from tr
{
|ψ〉〈ψ|H1

}
, is given therefore by

E1 = �(ω01 + cosα · ω1) =
{

�(ω01 + ω1) : α = 0
�(ω01 − ω1) : α = π

2

At positive times we have

E2 = �(ω02 + cosβ · ω2) =
{

�(ω02 + ω2) : β = 0
�(ω02 − ω2) : β = π

2

where β is the angle which ψψψ (twirling about ĥhh1) and ĥhh2 happen to subtend at
t = 0. The simple geometry of the situation is illustrated in Figures 4 & 5.40

More interesting in many respects is the physics that results when H(t)
changes not suddenly, but very slowly. Look again to the classical system

H(x, p; t) = 1
2mp2 + 1

2mω2(t)x2

or perhaps to the “gently transported oscillator”

H(x, p; t) = 1
2mp2 + 1

2mω2[x− a(t)]2

If the t-dependence were surpressed then the dynamical phase point
{
x(t), p(t)

}
would trace an ellipse, with intercepts

{
±

√
eE/mω2,±

√
2mE

}
and area given

therefore by

area =
∮

p dx = 2πE/ω (111)

One can show by simple argument (but more informatively by an argument that
proceeds with the aid of “action and angle variables” from Hamilton-Jacobi
theory)41 that

E(t)/ω(t) = constant in the “adiabatic approximation” (112)

But Planck gave us
area = nh : n = 1, 2, 3, . . .

which historically supplied En = n�ω but might now be used to support an
expectation that

n = E(t)/�ω(t) is an adiabatic invariant (113)

40 For more elaborate discussion, and reference to some pioneering work by
Pauli, see pp. 292–295 in Schiff.38

41 See classical mechanics (), pp. 412–421 for details, references and
historical remarks.
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Figure 4: The 3-vector ψψψ twirls about the axis defined by H1,
but at t = 0 the old Hamiltonian is abruptly replaced by H2 (→ is
replaced by →→).

E E+−E

α

Figure 5: Illustration of the simple relationship

E = �(ω0 +ω cosα)

between the expected energy of a system in state ψψψ and the apex
angle of the cone traced by ψψψ. The system is in energy eigenstate
|+〉 when ψψψ is parallel to hhh (i.e., when α = 0), and in state |−〉
when antiparallel.

The “old quantum mechanics” leads, in other words, to the expectation that a
system (here an oscillator) which begins in the nth quantum state will, under
adiabatic deformation, remain in the nth quantum state. The classical basis for
this expectation is illustrated in Figure 6. See §3.1 in Max Jammer’s Conceptual
Development of Quantum Mechanics () for a fascinating account of the
important role played by the “Adiabatic Principle” in the transition from old
quantum theory to the modern quantum mechanics of . The placement of
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Figure 6: The classical harmonic oscillator Hamiltonian inscribes
isoenergetic ellipses on phase space. Temporal modification of the
Hamiltonian (such as might be achieved by lending t-dependence to
the spring constant) causes deformation of the associated elliptical
orbits. An oscillator moves initially on the undeformed E-ellipse.
In adiabatic approximation the modified system will be found to be
tracing an ellipse of the same area, from which it follows that

work done on oscillator = Efinal − Einitial

=
ωfinal − ωinitial

ωinitial
· Einitial

that old idea within the modern theory was worked out by Fermi & Persico,42

and in greater detail by Born & Fock.43 Griffiths devotes his §10.1 to the

42 E. Fermi & F. Persico, “Il prinzipio della adiabatiche e la nozione de forza
vivo nella nuova meccanica ondulatoria,” Lincei Rend. 4, 452 (1926).

43 M. Born & V. Fock, “Beweis des Adiabatensatzes,” Z. Physik 51, 165
(1928). Appended to this paper is a valuable bibliography listing the principal
contributions to adiabatic theory in language of the old quantum theory, from
Ehrenfest (1916) through Dirac (1925).
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Figure 7: The figure on the left refers once again to the dynamical
motion of the unit 3-vector ψψψ representative of a pure state |ψ),
on the presumption that the Hamiltonian H0 is time-independent.
The figure on the right refers to a population of pure states such as
would be produced if ψψψ(t) were sampled at times t = n(period)/N
(n = 1, 2, . . . , N). Individual elements of the population circulate,
but the population as a whole is time-independent. The “ergodic
hypothesis” speaks to the equivalence of the two modes of averaging.

Figure 8: Representation of the mixed state which might have been
constructed by time-averaging, but might equally well have resulted
from averaging over the steady population shown at right in the
preceding figure. Note that the steady red arrow representative of
the mixture is parallel to the green arrow representative of the time-
independent Hamiltonian.
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subject, and an especially valuable discussion can be found in Schiff.38 My
own approach to the points at issue has been designed to exploit diagramatic
resources special to the two-state theory.

Figures 7–10 describe the plan of attack. The Hamiltonian

H(t) = �
{
ω0(t)I + ω(t)ĥhh(t)···σσ

}
(114)

interpolates between H0 ≡ H(t0) and H1 ≡ H(t1). The unit 3-vector ψψψ(t)
serves by 1

2

{
I + ψψψ(t)···σσ

}
to describe the projector onto the dynamical pure

state |ψt). At times prior to t0 the vector ψψψ(t) has been tracing a cone with
apex angle α and spin-axis ĥhh. Time-averaging over a period (or equivalently:
averaging over the ring-ensemble shown on the right in Figure 7) yields the
mixed state described by the time-independent density matrix

ρ••ρ ≡ 1
τ

∫ τ

0

|ψt〉 dt〈ψt| = 1
2

{
I + ρρρ···σσ

}
(115)

where ρρρ = ψψψ‖ = cosα · ĥhh. It is the time-independence of ρ••ρ that makes it, in
comparison to |ψt)(ψt|, such an attractive thing to watch. What we want to
show is that

ρρρ(t) = cosα · ĥhh(t) (116)

persists even when H is subjected to slow adjustment, and that the value of
cosα remains constant. Such a result (see Figures 9 & 10) would entail that

� cosα =
〈E − E0 〉(t)

ω(t)
is adiabatically invariant (117)

and so would be neatly consistent with our classical experience. To expose most
simply the mathematical essence of the issue before us, and to minimize the
width of the chasm which might separate formalism from physical intuition, I
will, in fact, revert to the language of classical mechanics, looking now in closer
detail to a system to which passing reference has already been made.17

symmetric charged top in a slowly wandering magnetic field

A rigid body—in effect, a “top”—spins with angular momentum S about
its center of mass. The top is assumed to be “symmetric” in the sense that
its principal moments of inertia (relative to the center of mass) are equal. The
top is assumed, moreover, to be made of some non-conductive material, and to
be uniformly charged. It has, therefore, a magnetic moment µµµ = gS , which in
the presence of an impressed magnetic field B contributes a term µµµ···B to the
energy of the system, so the Hamiltonian becomes

H = 1
2(moment of inertia) S···S + µµµ···B = aS2 + ωaaa···S

where a is a dimensioned constant, ω = gB bears the dimensions of a frequency,
and aaa is a dimensionless unit vector. From the Poisson bracket theory upon
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Figure 9: An external agent slowly modifies the Hamiltonian:

H0 −−−−−−−−−−−−→
H(t)

H1

as represented by the sequenced green arrows (of which not only
the direction but also the length is variable). It is claimed that
in adiabatic approximation the arrow representative of the mixture
remains parallel to the Hamiltonian arrow, and is of constant length.
The mixed state is, in effect, “transported rigidly, without internal
deformation or sloshing.”

E E+−E E+−E E

α

E

Figure 10: Adiabatic adjustment of the Hamiltonian generally
alters both the natural frequency ω = (E+−E−)/� and the expected
energy 〈E 〉, but in such a way that the angle α (which is to say:
the entropy of the mixture) remains constant.
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which we based (0–50) we know that

[S1, S2] = S3, [S2, S3] = S1, [S3, S1] = S2

[S1, S
2 ] = [S2, S

2 ] = [S3, S
2 ] = 0

from which it follows that

d
dtS

2 = −[H,S2] = 0 : S2 ≡ S···S is a constant of the motion

and

d
dt S = −[H, S ]

= ωaaa×S = ωAS with A ≡


 0 −a3 a2

a3 0 −a1

−a2 a1 0




Immediately
S(t) = eωA tS(0)

where R(t) ≡ eωA t is the rotation matrix that describes “twirling about the
aaa-axis with angular velocity ω.” The motion of the spin vector S is therefore
precessional, as illustrated on the left in Figure 7. Introducing

S‖ = (S···aaa)aaa : component of S parallel to aaa (118)

we see that
d
dt S‖ = ω (S···aaa)aaa×aaa = 0

S‖ is a constant of the motion, and so in particular is its length S‖ = (S···aaa).
If we assign arbitrary time-dependence to the strength of the magnetic field

ω �→ ω(t) then the preceding line of argument gives

d
dt S = ω(t)AS =⇒ S(t) = e

A

∫ t

0
ω(s) ds

S(0) (119)

The conservation of S2, S‖ and S‖ is unaffected by such an adjustment.

Now assign arbitrary time-dependence also to the direction of the magnetic
field; i.e., let aaa �→ aaa(t) wander in some prescribed way on the surface of the unit
sphere. Our time-dependent Hamilton has become

H(t) =aS2 + ω(t)aaa(t)···S (120)
↑
—would be pointless to deposit time-dependence here,

since this term is dynamically inconsequential

Borrowing an idea from (108.2) we might in place of (119) write

d
dt S = ω(t)A(t)S =⇒ S(t) = P

{
e

∫ t

0
ω(s)A(s) ds

}
S(0) (121)
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but the expression on the right is hardly more than a fancy name for a heavy
computational program; it is, except in favorable special cases, uninformative
as it stands. It is, however, evident that [H(t), S2 ] = 0; however complicated
the motion of S(t) may have become, the constancy of S2 = S(t)···S(t) has been
preserved.

Look now to the motion of S‖, which has become an observable with a
time-dependent definition

S‖ ≡
(
S···aaa(t)

)
aaa(t) : component of S instantaneously parallel to aaa(t)

so to describe the dynamical motion of S‖ we must write

d
dt S‖ = −[H(t), S‖] + ∂

∂t S‖ (122)

The first term on the right vanishes as before, but if we write bbb ≡ d
dtaaa then we

have
d
dt S‖ = 0 + (S···bbb)aaa + (S···aaa)bbb

Similarly (or arguing from the result just obtained, with the aid of aaa···bbb = 0,
which follows upon differentiation of aaa···aaa = 1)

d
dtS‖ = (S···bbb) = (bbb···S⊥) (123)

and it is upon implications of the latter equation that we will concentrate. From
(123) and the established fact that S2 is conserved it follows immediately that

S‖(t) = S‖(0)+
∫ t

0

b(u)
√
S2 − S2

‖(u) cosϑ(u) du︸ ︷︷ ︸
bounded by ± S

∫ t

0

b(u) cosϑ(u) du

where ϑ(t) refers to the angle instantaneously subtended by S⊥(t) and bbb(t):

ϑ(t) =
∫ t

0

ω(s) ds +
{

relatively small correction term arising from

the geometry of the curve traced by aaa(t)

Our objective is to establish that under weak hypotheses

S‖(t) = S‖(0) for all t in the adiabatic limit (124)

To expose most simply the meaning of the preceding assertion, and the
mechanism at work, I look first to a simplified model:

Suppose a(t) ramps linearly from a0 to a1 in time T :

a(t) =

{
a0 : t � 0
a0 + (a1 − a0)t/T : 0 � t � T
a1 : T � t
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Then

b(t) ≡ ȧ(t) =

{ 0 : t � 0
(a1 − a0)/T ≡ b : 0 � t � T
0 : T � t

The constant b ↓ 0 as T ↑ ∞, but in such a way that
∫ T

0
b(u) du remains

dilationally invariant. Suppose additionally that ω(t) ramps linearly from ω0

to ω1 in time T :

ω(t) =

{
ω0 : t � 0
ω0 + (ω1 − ω0)t/T : 0 � t � T
ω1 : T � t

Then

ϑ(t) =
∫ t

0

ω(s) ds = ω0t + 1
2 (ω1 − ω0)t2/T : 0 � t � T

and (ask Mathematica for the details)
∫

cosϑ(u) du can be described in terms
of the so-called “Fresnel integrals”44

C(t) ≡
∫ t

0

cos 1
2πu

2 du and S(t) ≡
∫ t

0

sin 1
2πu

2 du

Look to a concrete case: let b assume unit value in the case T = 10 (therefore
b = 1

2 in the case T = 20, b = 1
4 in the case T = 40, etc.), and let ω1 = 2ω0

with ω0 = 2π, giving ϑ(t) = 2πt + πt2/T . Then

∫ t

0

b(u) cosϑ(u) du =




∫ t

0
cos(2πu + 1

10πu
2) du =

√
5
1

{
C

(
t+10√

5

)
− C

(
10√
5

)}
1
2

∫ t

0
cos(2πu + 1

20πu
2) du =

√
5
2

{
C

(
t+20√

10

)
− C

(
20√
10

)}
1
4

∫ t

0
cos(2πu + 1

40πu
2) du =

√
5
4

{
C

(
t+40√

20

)
− C

(
40√
20

)}
↓
0 asymptotically

with consequences which are illustrated in Figure 11.

The preceding discussion is not so restrictively special as it might appear.
For we might use the values assumed by a(t) and ω(t) at times

tn ≡ t0 + n(T − t0) : n = 1, 2, . . . , N

to construct spline approximants to those functions; since between consecutive
nodal times tn and tn+1 the approximants are in fact ramped, the preceding

44 Good discussion of these important functions can be found in Spanier &
Oldham, An Atlas of Functions (), Chapter 39; Gradshteyn & Ryzhik,
§8.25; or Abramowitz & Stegun, §7.3.
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Figure 11: Superimposed graphs of∫ t

0

cos(2πu + 1
10πu

2) du : 0 � t � 10∫ t

0

1
2 cos(2πu + 1

20πu
2) du : 0 � t � 20

remarks pertain—internodal sector by internodal sector.

The essential point is that the dilation which sends a(t) −→ A(t) ≡ a(t/k)
sends a′(t) −→ A′(t) ≡ 1

ka(t/k): we have the previously remarked dilational
invariance statement∫ kT

0

A′(u) du =
∫ kT

0

1
ka

′(u/k) du =
∫ T

0

a′(t) dt = a(T )− a(0)

But the introduction of an oscillatory factor which does not participate in the
dilation serves to break dilational invariance∫ kT

0

A′(u) cosωudu =
∫ T

0

a′(t) cos kωt dt 
=
∫ T

0

a′(t) cosωt dt

Moreover

lim
k→∞

∫ T

0

a′(t) cos kωt dt = 0 (125)

under weak hypotheses which I will not attempt to spell out, but which permit
ω also to be endowed with some t -dependence.

So (124) is established: S‖ is adiabatically invariant, and (since S is
unrestrictedly invariant) so also is S⊥. Slow reorientation of the magnetic
field “leads the top by its nose” in Griffiths’ phrase. Slow adjustment of the
strength of the field has no effect upon the rate of spin, but does affect the rate
of precession.
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The mathematics pertains with only interpretive change to the quantum
theory of two-state systems: adiabatic adjustment of the Hamiltonian (see again
Figure 9) leaves unchanged the length of the ψψψ‖ vector (and therefore also of the
ψψψ⊥ vector). The 3-vector ψψψ = ψψψ‖ +ψψψ⊥ precesses about the momentary ψψψ‖-axis
at a rate determined by the momentary “strength” of H(t). The flying vector
ψψψ(t) “points” (in the sense that 1

2

{
I +ψψψ(t)···σσ

}
projects onto) a flying sequence

|ψ〉t of complex 2-vectors which describe the dynamical quantum state of the
system. One could (with Griffiths; see his §10.1.3) phrase the argument directly
in terms of those state vectors, but then one must live with (and contrive to see
the simplicity which lies beyond) the fussy complexity of those |ψ〉-vectors (see
again (15.3)). In the parallel theory of N -state systems (N > 2) there appears
to be, in fact, no other way to go,45 but it is my experience that even in that
enlarged setting our toy theory does serve to illuminate what’s going on.

I have previously remarked (see again Figures 7 & 8) that the “flying”
component of ψψψ(t) can be expunged by an averaging process, leaving ψψψ‖ as the
descriptor of a mixture, with density matrix given by

ρ••ρ = 1
2

{
I + ψψψ‖···σσ

}
One might be tempted to interpret what we now know about the adiabatic
motion of ρ••ρ to mean that “slow transport of a mixture preserves the relative
placement of its constituents”—in a word: “generates no internal sloshing”—
but to adopt such language entails risk of imputing an objective reality to the
notion of “constituent” which we have found to be classically meaningful but
quantum mechanically disallowed.

Possibly more useful therefore—or at least more sharply curious—is the
observation that the adiabatic invariance of the

length of ψψψ‖ =
√

2trρ••ρ2 − 1

can be interpreted46 to signify the

adiabatic invariance of the entropy of ρ••ρ (126)

In thermodynamics one has, by the first law,

dU = d̄Q + d̄W

where d̄Q (differential “heat injected”) refers to the energy increase which
results when a dynamical trajectory is flicked from an isoenergetic surface to
one of higher energy (same Hamiltonian), while d̄W (differential “work done
on”) refers to slow adjustment of the parameters which control the design of the
Hamiltonian. And by the second law

d̄Q = TdS

45 See Schiff, Quantum Mechanics (3rd edition ), pp. 289–292.
46 See again (22) and (23).
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in which sense “adiabatic” (d̄Q = 0) means “isentropic” (dS = 0). So the
quantum mechanical statement (126) conforms very nicely to thermodynamic
usage. I find it impossible to think that this confluence of ideas is merely verbal,
yet must emphasize that on the thermodynamic side of the street essential
reference is made to the famously elusive concept of a “thermized state,” while
no such notion appears to inhabit the quantum mechanics.

It is interesting in this light to notice that abrupt adjustment of the
Hamiltonian followed by re-thermalization of the mixture (quantum analog of
Joule free expansion) in non-isentropic, and in fact entails

Safter > Sbefore

since (see again Figure 4) ψψψ‖after is necessarily shorter than ψψψ‖before . It must,
however, be emphasized that quantum mechanics—unenriched by any further
principle—provides no mechanism by which “re-thermalization” might come
about, no indication of how a mixture acquires the features of its time-average.

Geometric phase. Let the design of the Hamiltonian H(t) be adiabatically
adjusted (Figure 9) in such a way that at time T it has returned to its original
design (Figure 12):

H(0) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
adiabatic tour of a loop in parameter space

H(T ) = H(0)

Then ĥhh(t) will trace a closed curve on the unit sphere, which ψψψ‖(t) will track.
Initially (i.e., at times t < 0) ψψψ(t) was tracing a circle, and upon completion of
the tour (i.e., at times t > T ) finds itself retracing that same circle, but it will
in general be out of phase with the comparison system which remained at home
the whole time.

Let H tour = �ω(t)ĥhh(t)···σσ describe the system that takes the leisurely tour,
and Hhome = �ω(t)ĥhh···σσ the system that stays home and twiddles its thumb
ω(t). Take it to be understood that ĥhh(0) = ĥhh(T ) = ĥhh. By the time the tourist
returns to its point of departure the stay-at-home system, according to (54),
will have experienced a net precession given by

θhome = 2
∫ T

0

ω(t) dt

The tourist, on the other hand, will be relatively phase-advanced

θtour = θhome + (spherical area Ω enveloped by the tour) (127.1)

for the non-dynamical, purely geometrical reason described in the caption to
Figure 13. Retreating from ψψψ -language to |ψ)-language, we find (see again (54))
that

phase of |ψ)tour = phase of |ψ)home + 1
2Ω (127.2)

where the 1
2 can be considered to reflect (not a minor mystery, as is sometimes

alleged, but simply) the double-valuedness of the SU(2) representation of O(3).
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Figure 12: Representation the tour taken by H tour = �ω(t)ĥhh(t)···σσ,
who finally returns home at time t = T .

Equations (127) illustrate a point first noted, in a more general quantum
mechanical setting, by Michael Berry in .47 J. H. Hannay, a colleague
of Berry’s at the University of Bristol, immediately demonstrated that the
“geometrical phase” phenomenon is not intrinsically quantum mechanical, but
is present also in classical mechanics (note in this connection that (127.1) could
be taken to refer to the adiabatic mechanics of our toy top). It was noticed
belatedly that an optical instance of the same phenomenon had been described
already by S. Pancharatnam in ,48 and within a few years the idea had
been recognized to have significant applications to topics ranging from gauge
field theory to the locomotion of robots and other creatures.49

I digress to argue that “geometric phase” had been implicit in the work
of mathematicians/physicists/engineers for more than a century by the time
Pancharatnam published his paper—since , to be precise, when
• “Stokes’ theorem” (known to Wm Thomson (Lord Kelvin) already in )

made its first public appearance (as a problem to be solved by Cambridge
undergraduates), and
• the “polar planimeter” was invented by Jakob Amsler.

47 “Quantal phase factors accompanying adiabatic changes,” Proc. Roy. Soc.
(London) A392, 45 (1984).

48 “Generalized theory of interference and its applications,” Proceedings of
the Indian Academy of Sciences 44, 247 (1956).

49 We move by semi-cyclic manipulation of our shape; i.e., by touring closed
curves in high-dimensional “shape-space.” For a collection of the classic papers
in this young field, see A. Shapere & F. Wilczek, Geometric Phases in Physics
().
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Figure 13: A spherical triangle (triangle bounded by geodesic arcs)
is inscribed on the surface of a sphere of unit radius R. It has been
known since antiquity that

area = R2·
{
(sum of interior angles)− π

}︸ ︷︷ ︸
“spherical excess”

Of more recent vintage is the discovery that parallel transport of
a vector around such curve results in an “angular misalignment”
given by that same factor:

misalignment = spherical excess

=
area
R2

The latter formula pertains, in fact, to the curves which bound
arbitrary regions, by an easy argument based on the observation
that such regions can be approximated to any degree of precision by
fitting together spherical triangular tiles. Several more sophisticated
modes of argument are also available.
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1
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Figure 14: What is the area swept out by a rod of length 7 that
moves so that one end lies always on the blue curve C0 and the
other tours once around the closed loop C? What, in other words,
is the sum of the areas of the green quadrilaterals? The question
presumes that all points of C lie not greater than 7 from the nearest
point (and not less than than 7 from the most distant point) of C0.

I discuss those developments in reverse order.

Amsler’s planimeter50 springs from the solution of the problem posed in
the preceding figure. A detail is reproduced as Figure 15, for the purpose
establishing an elegant mathematical principle, as profound as it is simple.
Returning with that principle to the situation illustrated above, we find that

50 Jakob Amsler (–), the son of a Swiss farmer, went to Königsberg
to study theology, but was diverted into mathematical physics by influence
of Franz Neumann (who figured prominently in the pre-Maxwellian history
of electrodynamics, a subject to which Amsler himself also made youthful
contributions). In  he accepted a position as teacher in the Gymnasium
of Schaffhausen, Switzerland, in order to secure his financial position and to
gain time in which to do research. The success of his “polar planimeter” led
him to found a firm devoted to the manufacture and sale of precision scientific
instruments. Amsler’s planimeter was for years used widely by shipbuilders
and engineers, and was applied also to the computation of moments of inertia
and Fourier coefficients. By the time of his death he had sold 50,000 of the
things. Today one can buy digital planimeters which operate on the same
principle. Further information concerning Amsler—whom Felix Klein (in the
geometry volume of Elementary Mathematics from an Advanced Standpoint
()) describes somewhat condescendingly as a “mechanic,” though he has
only good things to say about Amsler’s invention (“highly ingenious and very
useful”)—can be found in the Dictionary of Scientific Biography ().
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a b

c
d

O

Figure 15: Let (abcd) signify the area of the �-oriented green
quadrilateral. Introducing an arbitrary reference point O we see
that

(abcd) = (Oab) + (Obc) + (Ocd) + (Oca)

The triangles acquire their orientation from the quadrilateral:

�Oab is �-oriented, so (Oab) is negative;
�Obc is �-oriented, so (Obc) is negative;
�Ocd is �-oriented, so (Ocd) is positive;
�Oda is �-oriented, so (Oda) is positive.

we are at once able to proceed from

swept area = (1221) + (2332) + (3443) + · · ·

to
swept area = (O12) + (O22) + (O21) + (O11)

+ (O23) + (O33) + (O32) + (O22)
+ (O34) + (O44) + (O43) + (O33)

But the terms of mixed color cancel pairwise (�O22 and �O22 have opposite
orientation, so (O22) + (O22) = 0, and so on down the line), leaving

swept area =
{
(O12) + (O23) + (O34) + · · ·

}
−

{
(O12) + (O23) + (O34) + · · ·

}
= area of region bounded by C

− area of region bounded by C0

But C0 bounds no area , so we have

swept area = area of the region R bounded by C

which will be fairly obvious to anyone who has (like me) spent childhood hours
contemplating the piston rods of steam locomotives.
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Figure 16: A different way to conceptualize the differential area
shown in the preceding figure. The green parallelogram has length 7
and a differential width we will call dw. The area of the wedge is
1
27

2dϑ, so the area of the entire shaded region can, in leading order,
be described

dA = 7dw + 1
27

2dϑ

Alternatively, we might argue from the preceding figure to the conclusion
that

swept area = 7

∮
dw + 1

27
2

∮
dϑ

But it is evident that
∮
dϑ = 0, so we have at last the equation which lies at

the heart of Amsel’s inspired contrivance:

area of the region R bounded by C = 7

∮
dw (128)

Given this pretty fact—which Klein holds up as an example of the kind of
mathematics that should be presented to school kids—the planimeter almost
invents itself; Amsel’s device is shown in Figure 17. The wheel serves as a
mechanical integrator.

The point to notice is that the planimeter, upon completion of a circuit,
returns home in an altered state: the wheel has experienced a phase advance
which reflects a geometrical property of the excursion. This I present as a
non-dynamical instance of “geometrical phase.”

What has this to do with Stokes’ theorem? Look to the (3-dimensional
Cartesian) instance of Stokes theorem which reads

∫∫
R

(∇∇∇×AAA)···dddSSS =
∮
∂R

AAA···dddsss

Set

AAA =



− 1

2y

+ 1
2x

0


 =⇒ ∇∇∇×AAA =


 0

0
1



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Figure 17: Amsel’s “polar planimeter.” It has been mechanically
expedient to take the reference curve C0 to be circular. The wheel
turns on a threaded axel, so rotation can be read as translation along
a vernier. The green square is a “unit area,” used to calibrate the
device.

and with the aid of

dddSSS =


 dydz

dzdx
dxdy


 and dddsss =


 dx

dy
dz




obtain ∫∫
R
dxdy ≡ area of R = 1

2

∮
(xdy − ydx) (129)

Some other ways to say the same thing, each instructive in its own way:

area = 1
2

∮ ∣∣∣∣∣∣
1 0 0
1 x y
1 x + dx y + dy

∣∣∣∣∣∣ = 1
2

∮
r2 dθ

The essence of the situation is exposed by the elementary observation that
the differential form encountered at (129) is “inexact,” in the sense that

there exists no f(x, y) such that df = ∂f
∂xdx + ∂f

∂y dy = xdy − ydx
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In some fields (thermodynamics, most notably) it has become standard to use
d̄-notation to register the distinction: one writes

d̄f = fxdx + fydy if ∂
∂xfy − ∂

∂yfx 
= 0

and in the contrary (or “exact”) case writes df . One has∮
df = 0 invariably, but∮
d̄f 
= 0 typically

and observes that
∮
d̄f is invariant under “gauge transformations” d̄f → d̄f+dg.

The terms “inexact” and “anholonomic” refer to the same mathematical
circumstance, and geometrical phase is—in every instance, whatever the context
—a manifestation of anholonomy . One is therefore not surprised to find that
the latter term is ubiquitous in the Berry phase literature.49

Look back again in this light to Figure 16, were we encounter the equation
dA = 7dw+ 1

27
2dϑ. Given C0 and C, one could in principle work out descriptions

of the dw = wxdx + wydy and dϑ = ϑxdx + ϑydy that result from differential
advance (x, y) → (x + dx, y + dy) along C. Amsel’s construction hinges of the
circumstance that dϑ is exact (exploited when we wrote

∮
dϑ = 0), while dw

(more properly d̄w) is inexact.

It is amusing to note that if you carried a gyro and a pair of accelerometers
(integration of their output would yield x(t) and y(t)) while walking around a
fenced field, you could, upon completion of your hike, use (129) to compute the
area of the field . . .without ever venturing onto it. Or more physically: let x(t)
and y(t) refer to the periodic motion of a mass m around a closed track. Then

2m(area enclosed by track) =
∫ period

0

m(xẏ − yẋ) dt

from which a number of interesting conclusions could be drawn. It was Kepler
who (in effect) first noticed the implied relation between orbital area and
angular momentum.

Return now to the sphere which launched this entire discussion. Tinkering
leads me (in the notation of Figure 18) to introduce the vector field

AAA =


Ar(r, θ, φ)

Aθ(r, θ, φ)
Aφ(r, θ, φ)


 =




0

−φ 1
2r sin θ

− 1
2r cot θ


 (130.1)

on grounds that, by calculation,

∇∇∇×AAA =


 1

cot θ
−φ sin θ


 (130.2)
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Figure 18: We employ spherical coordinates introduced in such a
way

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

:
0 < θ < π

0 � φ < 2π

as to render
{
drdrdr, dθdθdθ, dφdφdφ

}
a righthanded frame. The convention is

in agreement with that employed by Griffiths and by Mathematica,
whose <<Calculus�VectorAnalysis� package can be used to
remove the tedium from calculation involving the spherical identities
which Griffiths reproduces on the front endboards of his Introduction
to Electrodynamics (//). Notice that θ here signifies not
latitude but “co-latitude.” The figure is intended to emphasize that,
for purposes of the present discussion, the poles must be carefully
avoided, and that also one must be careful not to trip on the
multivaluedness of φ. We agree to write r̂rr, θ̂θθ and φ̂φφ—directed as
indicated by

{
dr, dθ, dφ

}
—to denote orthonormal unit vectors in

that particular element of the “frame field” which is associated with
the point

{
r,θ,φ

}
.

Surface elements on the sphere can be described

dSdSdS = r2 sin θ dθdφ · r̂rr =


 r2 sin θ dθdφ

0
0


 (130.3)

so if R does not violate restrictions imposed in the figure, then

area of spherical region =
∫∫

R
(∇∇∇×AAA)···dddSSS =

∫∫
R
r2 sin θ dθdφ (130.4)
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But by Stokes’ theorem we expect to have

area of spherical region =
∮
∂R

AAA···dddsss with dddsss =


 0

rdθ
r sin θdφ




= − 1
2r

2

∮
∂R

(φ sin θ dθ + cos θ dφ) (130.5)

which (as I will in a moment demonstrate) is readily established on independent
grounds; the effort will supply evidence (if evidence were needed) that Stokes’
theorem works even in non-Euclidean settings. It is, by the familiar

�����
�����
�����

argument, sufficient to establish that (130.5) pertains accurately to the curves
that bound infinitesimal patches:

(θ, φ) • ←− • (θ, φ + dφ)
| ↑
↓ |

(θ + dθ, φ) • −→ • (θ + dθ, φ + dφ)

We find in leading order that

− 1
2r

2

∮
little patch boundary

(φ sin θ dθ + cos θ dφ)

= − 1
2r

2
{
φ sin θ dθ + cos(θ + dθ)dφ− (φ + dφ) sin θ dθ − cos θ dφ

}
= (first-order terms cancel) + 1

2r
2 sin θ dθdφ + · · ·

which is precisely the result we sought.51 We will soon have need of (130).

I turn finally to a discussion motivated by the question: How might Berry
phase be observed?

Interference effects in quantum mechanics. Generally, we expect to have to use
interferometric techniques to detect phase relationships . . . at least when they
occur in physical contexts that involve superimposable waves (optics, acoustics,
wave mechanics). The generic idea is quite simple: one constructs

z(δ) = z1 + z2e
i δ : superimposed complex signals

51 If, at (130.5), we in place of the co-latitude θ introduce the geographer’s
latitude ϑ ≡ π

2 − θ then we have

− 1
2r

2

∮
∂R

(φ sin θ dθ + cos θ dφ) = +1
2r

2

∮
∂R

(φ cosϑ dϑ− sinϑ dφ)

which is encountered in the discussion of Pancharatnam’s phase48 that can be
found in “Ellipsometry” ().
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Figure 19: Representation of the superposition process

z = z1 + z2e
i δ

as it is encountered in (say) optics or acoustics. One has interest
in the squared modulus of z as the relative phase δ ranges through
all values; i.e., as • ranges on the circle. The δ-values which serve
to maximize/minimize |z|2 are evident.

and looks to the δ -dependence of |z(δ)|2, which in optics/acoustics carries
an “intensity-like” interpretation. The preceding figure illustrates the simple
essence of the matter.

The quantum mechanical situation differs in one simple but characteristic
and profoundly important respect (which—unaccountably—the texts typically
neglect to mention): a ket vector is not admissible as a state-descriptor unless
it has unit norm, so state superposition must be followed by renormalization

|ψ) =
|ψ1) + |ψ2)ei δ

normalization factor
: superimposed quantum states (131)

and it would therefore senseless to inquire after the δ-dependence of (ψ|ψ) = 1.
To expose the phase-dependence hidden within the design of the
superimposed state one must make a measurement : one must look (Figure 20)
to the δ-dependence of some experimentally convenient component of |ψ) . . .
which is to say: one must look to how some selected expectation value depends
upon the relative phase. Recall in this light the design of the two-slit experiment,
where one looks to the squared modulus of ψ(x) ≡ (x|ψ).
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Figure 20: Representation of the superposition process

|ψ) =
|ψ1) + |ψ2)ei δ

normalization factor

as it is encountered in quantum mechanics. The unit value of (ψ|ψ)
is enforced by fundamental postulate. The phase-dependence of the
superimposed state becomes evident only when does a measurement;
i.e., when one projects out some arbitrarily selected component of
|ψ)—a process to which the green details refer.

Our “toy quantum mechanics” is too impoverished to support a two-slit
experiment, but does permit one to inquire after the phase-dependence of
expressions of the form (ψ|aaa···σσ|ψ)—in spin language: the expected spin in
some specified direction. The normalization factor encountered at (131) can be
described

√
norm with

norm = 2
[
1 + m cos(µ + δ)

]
where I have written (ψ1|ψ2) ≡ meiµ, with m-notation intended to suggest
“mixing.” In this notation we have

(ψ|A|ψ) =
(ψ1|A|ψ1) + (ψ2|A|ψ2) + (ψ1|A|ψ2)ei δ + (ψ2|A|ψ1)e−i δ

norm
(132)

Berry, however, has contrived a situation in which |ψ1) = |ψ2), at least to within
the precision of the adiabatic approximiation. In that special circumstance52

52 Let the shared value of |ψ1) and |ψ2) be called |Ψ).
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Figure 21: Schematic of an interferometer designed to observe
Berry’s phase. In that application, a prepared state |ψ0) is resolved
into two fractions, of which one proceeds under control of a fixed
Hamiltonian to a detector (green), while the other is subjected to an
adiabatic adventure (red), such as might be achieved by slow passage
through a spatially variable impressed field. The reassembled state
presented to the detector (which in two-state theory will register
either plus or minus) is the renormalized superposition of |ψ1) and
|ψ2).

we have

|ψ) =
1 + ei δ√

2(1 + cos δ)
|Ψ) = e

1
2 i δ · |Ψ)

Relative phase survives here only as an unphysical phase factor which, in point
of principle, no measurement can expose: we have

(ψ|A|ψ) = (Ψ|A|Ψ) for all values of δ

which could, alternatively, have been extracted directly from (132). The
surprising conclusion is that, while the interferometer shown above works fine
as a detector of optical Berry phase,53 it fails quantum mechanically.

Suppose, however, that adiabatic transport carries |ψ0) to a state |ψ2)
distinct from |ψ1); i.e., that progress around the loop remains incomplete by
the time the reassembled state is presented to the detector. Prior to Berry’s
publication () we might have expected to find

|ψ) =
|ψ1)e−iωt + |ψ2)e−iωt√

norm
presented to the detector

giving

(ψ|A|ψ) =
(ψ1|A|ψ1) + (ψ2|A|ψ2) + (ψ1|A|ψ2) + (ψ2|A|ψ1)

norm

Berry argues that we should in fact expect to have

53 In optics no renormalization factor intrudes to mess things up.
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|ψ) =
|ψ1)e−iωt + |ψ2)e−i(ωt+γ)

√
norm

: Berry phase now included

giving

(ψ|A|ψ) =
(ψ1|A|ψ1) + (ψ2|A|ψ2) + (ψ1|A|ψ2)e−iγ + (ψ2|A|ψ1)e+iγ

norm

He argues, moreover, that—within the context provided by two-state theory54

—for loops (closed arcs)

γ(loop) = 1
2 (area enclosed by loop) = − 1

4

∮
loop

(φ sin θ dθ + cos θ dφ)

=
∮

loop

AAA···dsdsds

We are tempted to assert that for open arcs

γ(open arc) =
∮

arc

AAA···dsdsds

but confront the circumstance that AAA is determined only to within a gauge
transformation. In my account51 of the very closely related problem studied by
Pancharatnam it emerges that a physical consideration (intensity maximization)
permits one to discover the “right gauge.” In the present context a geometrical
principle (parallel transport) might plausibly be pressed into similiar service
. . .but to pursue that remark all the way to a theory of the “observable Berry
phase for open arc transport” would take me too far afield. I have a bear by
the tail, but must for now release my hold and run for protective cover, with
this final remark:

It is interesting that the Berry phase presented by our toy top poses no
observational difficulty, while observation of the formally identical “transported
2-state quantum system” is proscribed for athe most fundamental of quantum
mechanical reasons.

54 See again Figure 12 and (130.5).


