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Abstract. Delay dynamics have wide relevance in fundamental science and technol-
ogy due to the ubiquitous presence of feedback loops in which time lags arise because
of natural processes, control interfaces, or performance limits of components. We
present results from a well-controlled experiment that is representative of feedback
systems with relays (switches) that actuate after a fixed delay. Notably, the system
exhibits strong multirhythmicity, the coexistence of many stable periodic solutions
for the same values of parameters. We then study the system dynamics analytically.
The model we consider is a nonsmooth second-order delay differential equation that
describes single-input single-output systems in which the delayed feedback is a band-
pass filtered relay signal. We discuss how periodic solutions and bifurcations can be
obtained by reducing the system to a set of finite-dimensional maps. We find good
agreement between theory and experiment.
Keywords: Nonlinear dynamics, Bifurcations, Delay differential equations, Nonlin-
ear circuits, Relay systems, Nonsmooth dynamical systems, Quasiperiodic oscilla-
tions.

1 Introduction

In this paper we study the dynamics of a time-delayed relay systems.
A relay refers to a switch that flips between two or more fixed outputs

depending on its input. Relay models of naturally occurring systems arise
when nonlinearities are well approximated by functions that take on discrete
values [1, 2]. Relays also have great practical importance in man-made systems
because relay feedback control systems are applied in many different areas of
engineering. In this paper we consider relays that switch between two constant
outputs without hysteresis and, consequently, model the relay nonlinearity as

sign(x) =

{
+1 x ≥ 0

−1 x < 0
. (1)
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Delay arises naturally due to finite signal transmission and processing times,
sampling delays, or latencies in external control loops. The addition of such
delay terms to a differential equation describing the system evolution generally
introduces a wealth of complex dynamic behavior on multiple time scales [2–
10]. If delay arises in relay systems, the model becomes a nonsmooth delay
differential equation (DDE). Due to their importance, nonsmooth DDEs have
been the focus of much recent attention [1, 2, 11–15].

First order DDEs of relay systems are well understood. In first order
DDEs with a negative delayed relay feedback, one typically finds that there
is a unique nonasymptotically (orbitally) stable slowly oscillating periodic so-
lution [11, 12, 16–18].† This can be shown rigorously if the first order DDE
is linear (aside from the relay term) and also holds for nonlinear DDEs un-
der certain boundedness assumptions [11, 12]. In such systems, there exists a
countably infinite set of rapidly oscillating periodic solutions, but all of these
are unstable. Therefore, in practice, such systems converge to the slowly oscil-
lating solution [18].

Compared to first order systems, the dynamics of second order time-delayed
relay systems is less well understood. Yet, second order DDEs are often re-
quired to accurately describe natural phenomena and technological applica-
tions. Therefore, we study in this paper one of the simplest second order mod-
els, a linear second order time-delayed relay system in which velocity serves
as the feedback signal. We show in experiment and theory that the system
exhibits strong multirhythmicity, the coexistence of multiple stable periodic
solutions [19].

2 Multirhythmicity

The coexistence of many periodic solutions is a common feature of DDEs. This
is seen by considering, as an example, a periodic solution x(t) of a scalar DDE
ẋ = F [x(t), x(t − τ)] that has a period p and ν zero crossings of x per delay
interval τ . The periodic function x is also a solution to the same DDE with
the delay increased to τ ′ = τ + n p (n = 1, 2, 3, . . .), since the right hand side
of the DDE is left invariant. With regard to the new delay τ ′, the solution has
a larger number of zero crossings per delay (ν′ > ν).

If one considers now smooth changes of the delay parameter τ ′ back to τ
and assumes that the solution x deforms but continues to exist as a solution
with ν′-zero crossings, then the DDE must have periodic solutions with both ν
and ν′ crossings. The existence of a single periodic solution would then imply
an infinite number of coexisting periodic solutions (since n is arbitrary). Of
course, the assumption in this argument can break down, such as for solutions
that are destroyed by bifurcations upon variation of τ . It is therefore necessary
to study solutions and their domain of existence in detail.

† Slowly oscillating refers to periodic solutions with period larger than twice the de-
lay, whereas solutions with periods less than twice the delay are said to be rapidly
oscillating.



Furthermore, the argument says nothing about stability and it is exactly
the question of stability that we are interested in. While there are, typically,
no coexisting stable periodic solutions for linear first order delayed relay sys-
tems (only the slowly oscillating solution is stable), coexisting stable solutions
do exist for linear second order delayed relay systems. To demonstrate this
multirhythmicity, we first discuss an experiment demonstrating this fact and
then explain how the linear second order delayed relay model describing the
experiment can be reduced to a set of maps that allow one to establish multi-
rhythmicity analytically.

3 Multirhythmicity in Experiment

In our experiment, an external function generator is used to write an initial
waveform into the feedback loop, as shown in the schematic in Fig. 1. After the
initial history function is written, the switch is actuated, thereby disconnecting
the function generator, closing the feedback loop, and making the system au-
tonomous. In the feedback loop of the autonomous system, the output of the
bandpass filter (Vout), passes through a relay nonlinearity, the output of which
is attenuated and serves as the input (IN) of a programmable electronic delay.
The delayed signal (OUT) is amplified and provides the input to the bandpass
filter, closing the loop.
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Fig. 1. Schematic representation of experiment.

The experiment is well modeled by a simple linear second-order DDE with
a relay nonlinearity, which is obtained as follows: We define the input of the
bandpass filter as Vin. Then, the action of the relay nonlinearity, attenuator,
delay, and amplifier can be written as

Vin(t) = f [Vout(t− τ)] , (2)



with

f [Vout(t− τ)] =

{
γVs Vout(t− τ) ≥ 0

−γVs Vout(t− τ) < 0
, (3)

where Vs = 15 V is a fixed rail voltage and γ is the combined gain of the
attenuator, delay, and amplifier (see App. A for a details).

As shown in App. A, the action of the bandpass filter is described by the
integro-differential equation

Vout(t) +
Q

ωc
V̇out(t) +Qωc

∫ t

Vout(s) ds = −Gf [Vout(t− τ)] , (4)

where G is the filter’s gain, Q its quality factor, ωc its center angular frequency,
and we made use Eq. (2) to replace Vin. The introduction of the dimensionless
variable

y =
Qωc

γ GVs

∫ t

Vout(s) ds (5)

maps Eq. (4) onto the nonsmooth DDE

ω−2c ÿ + (ωcQ)−1 ẏ + y = −sign[ẏ(t− τ)]. (6)

This is the second-order nonsmooth DDE whose nontrivial dynamics we are
exploring.

To demonstrate multirhythmicity, i.e. the coexistence of stable slow and
fast-oscillating solutions, one needs to initialize the system in the basin of
attraction of the desired stable periodic orbit. To do so, a ±10 V square wave
at a particular frequency was generated by the function generator and fed to
the system through the switch. The system was then transitioned into feedback
mode by throwing the switch. The switching action was fast enough such that
the voltage history in the feedback loop would result in system oscillations at
the driving frequency for times immediately following the switching. Thus, the
circuit could be perturbed into a region of interest in frequency-space.

At a given delay, the system was pushed into varying regions of frequency
space, starting around the slow-oscillatory solution, within and around the
passband of the bandpass filter. After each initialization, the circuit was al-
lowed to settle into a stable oscillatory solution, the period of which was sub-
sequently recorded. This was repeated with increasing initial frequencies until
no new final periods were found and the system consistently decayed to already
observed asymptotic solutions.

The result of this procedure for a fixed delay τ and fixed bandpass filter is
displayed in Fig. 2. It is seen that there are four coexisiting stable asymptotic
solutions with inverse period of 105.5 s−1, 314.6 s−1, 523.5 s−1, and 733 s−1, re-
spectively. Initial square waves with frequencies close to the frequency of one of
the asymptotic solutions were found to decay to it, as seen by the correspond-
ing colors in Fig. 2. Initial square waves with frequencies well above those of
the four asymptotic solutions tended to decay to one of the lower frequency
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Fig. 2. Frequencies of driven initial oscillations and the inverse period of the solu-
tion to which they decayed (dark lines) during trial 1 (see Tab. 1) with a delay of
τ = 4.765(3) ms. Colored bars represent the basins of attraction of the asymptotic
oscillatory solutions of the same color within them. Above an initial frequency of
860 Hz (grey bar), the system jumped over the 733 s−1 solution and decayed to lower
frequency solutions.

0 1 2 3 4 5
0

200

400

600

800

1000

1200

Fig. 3. Diagram of observed inverse periods of the stable attracting asymptotic os-
cillations (black circles) for delays between 0.515(3) ms and 5.265(3) ms and bandpass
parameters of trial 1 (see Tab. 1). The dashed lines are functions of the form n/(2τ)
for n ∈ {1, 3, 5, 7}.

solutions, skipping the 733 s−1 stable solution. This can be interpreted as an
indication that the basin of attraction of the 733 s−1 stable solution is smaller
than the other basins.

In Fig. 3 we show, for a fixed bandpass filter, the inverse period of the
asymptotic solutions as a function of the delay τ . As indicated by the dashed
lines, the period of the modes is roughly equal to 2τ divided by an odd number
(odd due to the use of negative feeback). It is seen that the number of stable
coexisting solutions increases as the delay is increased, up to four solutions at
τ = 5 ms. Thus, the bandpass filtered relay circuit clearly demonstrates strong
multirhythmicity in the limit of large delays.

To explore the effect of the bandpass filter on the number of periodic so-
lutions (modes), we varied the corner frequencies. Narrowing the passband
by lowering the upper 3 dB frequency from 3.4 kHz, to 1.6 kHz, to 0.8 kHz did
reduce the number of coexisting modes. For example, at a delay of τ = 5 ms



from 9 to 5 to 3 modes. In contrast, narrowing the passband by increasing
the lower 3 dB frequency from 24 Hz, to 48 Hz, to 91 Hz did not decrease the
number of stable modes. This is shown in Fig. 4, which demonstrates that at
τ = 5 ms the number of modes actually increased from 4 to 5.
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10 100 1000 104
-60

-50

-40

-30

-20

-10

0

f (Hz)

G
ai
n
(d
B
)

0 1 2 3 4 5
0

500

1000

1500

τ (ms)

f(
H
z)

Trial 1

10 100 1000 104
-60

-50

-40

-30

-20

-10

0

f (Hz)

G
ai
n
(d
B
)

Trial 5

10 100 1000 104
-60

-50

-40

-30

-20

-10

0

f (Hz)

G
ai
n
(d
B
)

0 1 2 3 4 5
0

500

1000

1500

τ (ms)

f(
H
z)

0 1 2 3 4 5
0

500

1000

1500

τ (ms)

f(
H
z)

<latexit sha1_base64="3YFRrFvHcHgpaf22E4vLkxfUzFU=">AAACE3icbVC7SgNBFJ2Nrxhfa8TKZjAKsQm7QlSwCdikjGAekF3C7GQ2GTL7YGZWjMv+gL2trX6AnZ3Y+gF+gI1f4ewmhUk8cOFwzr3cw3FCRoU0jC8tt7S8srqWXy9sbG5t7+i7xZYIIo5JEwcs4B0HCcKoT5qSSkY6ISfIcxhpO6Or1G/fEi5o4N/IcUhsDw186lKMpJJ6etGF1iUsWx6SQ+7F9fvkpKeXjIqRAS4Sc0pKtf3Rg/X9etTo6T9WP8CRR3yJGRKiaxqhtGPEJcWMJAUrEiREeIQGpKuojzwi7DjLnsBjpfShG3A1voSZ+vciRp4QY89Rm2lGMe+l4n9eN5LuhR1TP4wk8fHkkRsxKAOYFgH7lBMs2VgRhDlVWSEeIo6wVHXNfMm6Ea5IYKGgyjHnq1gkrdOKeVapXquWqmCCPDgAh6AMTHAOaqAOGqAJMLgDT+AZvGiP2pv2rn1MVnPa9GYPzED7/AXRuqCB</latexit>

f (Hz)
<latexit sha1_base64="aaaC+6tSs1TtR460VUeF7pTIH94=">AAACFnicbVDLSsNAFJ34rPEVla7cDFahbkoiVAU3BTcuK9gHNKFMppN26EwSZiZCCfkBv8CtW926didu3foBbvwKp2kXtvXAhcM593IPx48Zlcq2v4yl5ZXVtfXChrm5tb2za+3tN2WUCEwaOGKRaPtIEkZD0lBUMdKOBUHcZ6TlD6/HfuueCEmj8E6NYuJx1A9pQDFSWupaRVehBLpXsOxypAaCp1xmp12rZFfsHHCROFNSqhWHD+7363G9a/24vQgnnIQKMyRlx7Fj5aVIKIoZyUw3kSRGeIj6pKNpiDiRXprHz+CJVnowiISeUMFc/XuRIi7liPt6c5xRzntj8T+vk6jg0ktpGCeKhHjyKEgYVBEcdwF7VBCs2EgThAXVWSEeIIGw0o3NfMm7kYHMoGnqcpz5KhZJ86zinFeqt7qlKpigAA7BESgDB1yAGrgBddAAGKTgCTyDF+PReDPejY/J6pIxvTkAMzA+fwGM6qH9</latexit>

⌧ (ms)

<latexit sha1_base64="eznhJykaqO04v4Zdv5WTr9KU478=">AAACFnicbVC7SgNBFJ2Nr7i+ViWVzWAUIkjYFaKWQQstI5gHZEOYncwmQ2Zml5lZISz5Ab/A1lZbazuxtfUDbPwKJ4/CRA9cOJxzL/dwgphRpV3308osLC4tr2RX7bX1jc0tZ3unpqJEYlLFEYtkI0CKMCpIVVPNSCOWBPGAkXrQvxz59TsiFY3ErR7EpMVRV9CQYqSN1HZyPke6J3l6haiA/jEsdC6Ohm0n7xbdMeBf4k1Jvpzr3/tfLweVtvPtdyKccCI0ZkippufGupUiqSlmZGj7iSIxwn3UJU1DBeJEtdJx/CE8NEoHhpE0IzQcq78vUsSVGvDAbI7CqnlvJP7nNRMdnrdSKuJEE4Enj8KEQR3BURewQyXBmg0MQVhSkxXiHpIIa9PYzJdxSSpUQ2jbphxvvoq/pHZS9E6LpRvTUglMkAV7YB8UgAfOQBlcgwqoAgxS8AiewLP1YL1ab9b7ZDVjTW92wQysjx/e7KGN</latexit> G
ai

n
(d

B
)

<latexit sha1_base64="eznhJykaqO04v4Zdv5WTr9KU478=">AAACFnicbVC7SgNBFJ2Nr7i+ViWVzWAUIkjYFaKWQQstI5gHZEOYncwmQ2Zml5lZISz5Ab/A1lZbazuxtfUDbPwKJ4/CRA9cOJxzL/dwgphRpV3308osLC4tr2RX7bX1jc0tZ3unpqJEYlLFEYtkI0CKMCpIVVPNSCOWBPGAkXrQvxz59TsiFY3ErR7EpMVRV9CQYqSN1HZyPke6J3l6haiA/jEsdC6Ohm0n7xbdMeBf4k1Jvpzr3/tfLweVtvPtdyKccCI0ZkippufGupUiqSlmZGj7iSIxwn3UJU1DBeJEtdJx/CE8NEoHhpE0IzQcq78vUsSVGvDAbI7CqnlvJP7nNRMdnrdSKuJEE4Enj8KEQR3BURewQyXBmg0MQVhSkxXiHpIIa9PYzJdxSSpUQ2jbphxvvoq/pHZS9E6LpRvTUglMkAV7YB8UgAfOQBlcgwqoAgxS8AiewLP1YL1ab9b7ZDVjTW92wQysjx/e7KGN</latexit> G
ai

n
(d

B
)

<latexit sha1_base64="eznhJykaqO04v4Zdv5WTr9KU478=">AAACFnicbVC7SgNBFJ2Nr7i+ViWVzWAUIkjYFaKWQQstI5gHZEOYncwmQ2Zml5lZISz5Ab/A1lZbazuxtfUDbPwKJ4/CRA9cOJxzL/dwgphRpV3308osLC4tr2RX7bX1jc0tZ3unpqJEYlLFEYtkI0CKMCpIVVPNSCOWBPGAkXrQvxz59TsiFY3ErR7EpMVRV9CQYqSN1HZyPke6J3l6haiA/jEsdC6Ohm0n7xbdMeBf4k1Jvpzr3/tfLweVtvPtdyKccCI0ZkippufGupUiqSlmZGj7iSIxwn3UJU1DBeJEtdJx/CE8NEoHhpE0IzQcq78vUsSVGvDAbI7CqnlvJP7nNRMdnrdSKuJEE4Enj8KEQR3BURewQyXBmg0MQVhSkxXiHpIIa9PYzJdxSSpUQ2jbphxvvoq/pHZS9E6LpRvTUglMkAV7YB8UgAfOQBlcgwqoAgxS8AiewLP1YL1ab9b7ZDVjTW92wQysjx/e7KGN</latexit> G
ai

n
(d

B
)

<latexit sha1_base64="sJUOxCbPfLYGVh2YWHANzWRySjQ="></latexit> 1/
P
er

io
d

(s
�

1
)

<latexit sha1_base64="sJUOxCbPfLYGVh2YWHANzWRySjQ="></latexit> 1/
P
er

io
d

(s
�

1
)

<latexit sha1_base64="sJUOxCbPfLYGVh2YWHANzWRySjQ="></latexit> 1/
P
er

io
d

(s
�

1
)

Fig. 4. Narrowing the passband by raising the lower 3dB corner frequency: Transfer
function magnitude (gain vs frequency) of the circuit with the relay circuit element
removed (left column, top to bottom: trial 4, 1, 5 [see Tab. 1]) alongside experimen-
tally determined modes (right column). The bottom and top dashed lines show the
lower corner frequency and the upper corner frequency, respectively.

It is interesting, and somewhat counterintuitive, that narrowing of the pass-
band does not necessarily lead to a decrease in the number of stable modes.
We will now turn to an analytic treatment to show how this result corresponds
to theory.

4 Multirhythmicity in Theory

In order to solve the delayed relay system DDE (6), we note that it is sufficient
to keep track of the headpoint coordinates (y(t), ẏ(t)) and the sign of ẏ in



the delay interval or, equivalently, the times τn at which ẏ crosses zero with
t− τ < τk < τk−1 < . . . < τ1 ≤ t. The state of the system at time t is a tuple
of variable length k + 2,

S(t) = (y, ẏ; τ1, τ2, . . . , τk). (7)

The solution can be obtained in terms of a discrete time map acting on S that
maps between key events. There are two key events that affect S(t):

1. A zero element is added at time t = tn. When ẏ passes through zero, a
zero element equal to tn is added to S; this does not immediately cause
the relay feedback to change but it will switch the sign of the feedback at
time tn +τ . Such an event is denoted by the symbol Z if ẏ transitions from
negative to positive and by Z for the opposite transition.

2. A zero-crossing time is removed from the history. When τk(t) = t − τ , τk
is deleted from S. The sign of the relay feedback switches. Such an event
is denoted by the symbol H if the feedback switch is due to a transition of
ẏ(t− τ) from negative to positive and by H for the opposite transition.

Between consecutive events, the feedback term in DDE (6) is constant, either
+1 or −1. The evolution is given by the solution of a linear ordinary differential
equation. Explicit solution of the ODE allows us to construct an iterative map
that moves the system forward in time from one event to the next.

Every oscillatory solution thereby generates a symbolic-sequence of events,
with periodic solutions represented by repeated sequences. We find that peri-
odic orbits of interest are those that have a repeating sequence of four events
per period, either [H,Z,H,Z] or [H,Z,H,Z], where we start all sequences with
H for consistency (every cyclic permutation of a repeating sequence represents
the same solution).

As detailed in [20], one can construct explicitly Poincaré maps that advance
solutions forward by four symbols. The fixed points of these maps are the
desired periodic solutions. We recall that the state vector in Eq. (7) has a size
that is given in terms of the integer k. Accordingly, there is a separate Poincaré
map for each integer k. In addition to obtaining the unique Poincaré-map fixed
point for each k, the linear stability analysis of these solutions has been carried
out explicitly [20], thereby analytically determining the stability of the periodic
solutions.

When discussing the dynamics of DDE (6), it is useful to distinguish the
underdamped (Q > 1/2) and overdamped (0 < Q < 1/2) regime. In the un-
derdamped regime, the transient response of the filter due to nonzero initial
conditions is oscillatory, whereas it is nonoscillatory in the overdamped regime.
In the overdamped regime, all stable solutions found in our analysis were pe-
riodic and all bifurcations were smooth standard bifurcations, whereas a much
richer solution and bifurcation structure exists in the underdamped regime [20].
Both regimes display multirhythmicity. In this paper we focus exclusively on
the overdamped regime because the experiments were conducted with Q < 1/2.

The DDE (6) depends on just two dimensionless parameters, the quality
factor Q and the dimensionless parameter Ω = ωcτ , the product of the filter
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Fig. 5. (a) Stable periodic oscillations in the overdamped regime (colored regions,
overlapping), stabilizing Neimarck-Sacker bifurcations (solid colored lines), and num-
ber of coexisting stable periodic solutions. (b) Scaled inverse period versus Ω of first
seven modes for Q = 0.1731 (gray dashed line in a). Mode stability: unstable (thin
line), stable (thick line). Bifurcations: Neimarck-Sacker bifurcations (solid squares).

center frequency and the delay. In terms of these parameters, a summary of
the periodic solutions and bifurcations in the overdamped regime is shown in
Fig. 5. The first seven stable modes are shown in Fig. 5a, each represented
by a color, and the stabilizing Neimarck-Sacker bifurcation (torus bifurcation
of the DDE) by a solid line of corresponding color. The number of coexisting
modes grows as Ω increases. Once a mode is stabilized, there are no further
bifurcations of a mode as Ω is increased further [20]. Thus, the system exhibits
strong multirhythmicity; the number of coexisting modes increases without
bound in the τ →∞ limit.

The period of the modes is approximately proportional to the delay. There-
fore, in Fig. 5b, we show the inverse period of the first seven modes scaled by
τ . The figure demonstrates the fact that, in the overdamped regime, all modes
always coexist. The rapidly oscillating modes are unstable for small τ and are
stable above some mode-dependent critical value of τ . The slowly oscillating
mode (red lowest curve) is always stable.

To explain the experimentally observed dependence of the number of stable
modes on the bandpass filter, we note that, for a fixed delay, narrowing the
passband by decreasing the upper 3 dB corner frequency will increase Q and
decrease Ω (decrease ωc). As seen by Fig. 5a, this tends to move the system
into a regime with a lower number coexisting stable solutions. In contrast,
narrowing the passband by increasing the lower 3 dB corner frequency of the
bandpass filter will increase both Q and Ω. This can move the system into a
regime with a larger number coexisting stable solutions, in agreement with the
experimental results.

5 Comparison of Experiment and Theory

In Fig. 6a we show the data of the experiment in which the filter passband was
decreased by increasing the low-frequency cutoff (same as Fig. 4). To compare
theory and experiment we then utilize the known quality factor Q and center
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Fig. 6. (Left column) Observed inverse periods of stable attracting asymptotic oscil-
lations (black circles) for delays between 0.515(3) ms and 5.265(3) ms (same data as in
Fig. 4). (Right column) Data (black circles) replotted on top of theoretical predictions
with unstable (thin line) and stable (thick line) solutions as well as Neimarck-Sacker
bifurcations (solid squares) indicated.

frequency ωc for each choice of corner frequency in order replot this data on
top of the theoretical predictions, as shown in Fig. 6b.

It is seen that the measured and predicted periods of the coexisting solutions
are in excellent agreement. Furthermore, the regions of stability agree. The
slowly oscillation solution (red) is always stable (experimental limitations did
not allow us to access delays below ∼ 0.5 ms). For rapidly oscillating solutions,
it is seen that the theoretically determined value of Ω at which a subcritical
Neimark-Sacker bifurcation of the map (subcritical torus bifurcation of the
DDE) stabilizes a solution is in excellent agreement with the minimal value of Ω
for which the corresponding mode is found in experiment. Small differences for
higher frequency modes are due to the fact that the simple two-pole bandpass
filter model is an approximation to the actual transfer function.



6 Discussion

This paper advances the study of relay systems. We discuss a model and an
experiment that are representative of systems that exhibit harmonic oscillator
type dynamics and have a time delayed relay feedback of the velocity signal.
They also represent systems with a delayed and bandpass filtered relay-type
feedback signal.

The model we consider is the linear second order DDE given by Eq. (6).
This paper focuses on negative feedback and the overdamped regime. Under
these conditions, the slowly oscillating solution of DDE (6) is always stable,
similar to first order delayed relay systems. In contradistinction to first order
delayed relay systems, this second-order systems exhibits strong multirhyth-
micity. That is, many stable rapidly oscillating solutions coexist with the
slowly oscillating solution. Nevertheless, the system dynamics are relatively
simple. Aside from periodic solutions, no other stable solutions were found in
the overdamped regime either numerically or in experiment.

Why is the dynamics of DDE (6) in the overdamped regime so simple?
One possible explanation is to note that the ODE flow associated with the
DDE gives rise to restrictions. That is, after an instant in which the delayed
feedback switches sign, the subsequent ODE flow will cross the ẏ = 0 switching
manifold at most once. If it does, then the number of zero crossings per delay
remains constant because one crossing is removed from the state vector at the
instant the delayed feedback switches sign and one zero-crossing is subsequently
added. A preserved number of zero crossings allows for the existence of rapidly
oscillating periodic solutions. If the ODE flow does not cross the switching
manifold, then the number of zero crossing decreases. Importantly, the number
of zero-crossings can not increase. This fact sets limits on the possible evolution
of the system and is reminiscent of the arguments used to prove facts about
the simple behavior of first-order delayed relay systems [11, 12].

In contrast, if DDE (6) is tuned to operate in the underdamped regime,
then the number of zero crossings may increase. Accordingly, much richer
dynamics and bifurcations are found, including non-standard bifurcations, so-
called discontinuity induced bifurcations [20]. In light of this, DDE (6) can
be viewed as a system that is intermediary between simple first-order delayed
relay systems and general DDEs with their, typically, complex dynamics.
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A Appendix: Experimental Setup

Shown in Fig. 7 is a circuit schematic of the experimental setup that implements
the bandpass filtered time-delayed relay sytem.
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Fig. 7. Circuit diagram in feedback mode (displayed). When the ADG1219 is
switched to SB, the circuit is open-loop and driven by a signal from a function gen-
erator.

The voltage produced by the amplifier (U1) is fed into a bandpass filter
(U2), which produces an output, labelled Vout. This signal passes through a
buffer (U3) to an ADG1219 analog Single-Pole-Double-Throw (SPDT) switch.
The purpose of buffer (U3) and the following resistor is to keep the input current
flowing into the switch at safe levels. The ADG1219 is used for fast switching
operations between the feedback loop (SA) and an Agilent 33210A arbitrary
waveform generator (SB) that is utilized to set the initial history function.

The output of the switch is fed into an operational amplifier acting as an
inverting comparator (U4). When the input at the inverting pin is greater than
0, the comparator outputs the negative rail voltage of −15 V, and vice versa.
To be compatible with the input requirements of the delay circuit, the voltage
signal is then attenuated, inverted, and offset by an operational amplifier (U5),
before being fed into the delay. On the other side of the delay, the signal is
amplified using a variable-gain amplifier (U1) with greater than unity gain.
The comparator, attenuator, and amplifier (U4, U5, and U1) work in concert
to generate the time-delayed relay signal.

The circuit implementing the adjustable delay is based around a First-In-
First-Out (FIFO) memory chip sandwiched between an analog-to-digital and
a digital-to-analog converter (see [18] for details on a similar circuit). The
FIFO-based delay circuit has an input that is limited to a signal of ±1 V and it
generates a small offset on the order of tens of millivolts. To account for these
operational limitations, the signal sent into the delay is first attenuated by
the variable-gain amplifier (U5) and an adjustable offset is added to cancel the
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Fig. 8. Filters used to condition the output of the FIFO delay circuit: The delay (τ)
is followed by a buffer-follower (D1), a 4th-order lowpass filter (D2 and D3), and a
10th-order lowpass filter (LTC1569-7). Bypass capacitors are not depicted.

delay circuit offset. The delay circuit output, as measured at the buffer-follower
(D1) (see Fig. 8), contains some residual high-frequency digital noise. This
noise is subsequently filtered out using two low-pass filters: a 4th-order filter
built from operational amplifiers D2 and D3, and a 10th-order filter created
using an LTC1569-7 integrated circuit. The resulting low-pass filter has a 3dB
frequency of 120 kHz, which means that its passband extends to frequencies
well above the passband of the bandpass filter in the feedback loop. Therefore,
this lowpass filter has no effect on the dynamics, it just serves to suppress noise.

Bandpass filter transfer function: The active bandpass filter in the feed-
back loop (see U2 in Fig. 7) is a two-pole filter with a transfer function H that,
in terms of angular frequency ω, is given by

H(ω) =
V̂out(ω)

V̂in(ω)
= − G

1 + iQ (ω/ωc − ωc/ω)
. (8)

Here, we introduced the filter center frequency ωc =
√
ω1ω2, in which ω1 =

1/R1C1 and ω2 = 1/R2C2. The filter gain is

G =
R2C1ω1ω2

ω1 + ω2

and the quality factor, the fraction of filter center frequency and width, is

Q =

√
ω1ω2

ω1 + ω2
.



Hence, one can write(
1 + iQ(

ω

ωc
− ωc

ω
)

)
V̂out(ω) = −G V̂in(ω), (9)

or equivalently, after Laplace transform to the time domain,

Vout(t) +
Q

ωc
V̇out(t) +Qωc

∫ t

Vout(s) ds = −GVin(t). (10)

In the experiment, the bandpass filter’s upper and lower 3dB frequencies were
changed by choosing different values for the resistors R1 and R2 (see U2 in
Fig. 7) with values given in Tab. 1.

Table 1. Resistance values for the trials performed. Capacitor values of C1 =
10.011(7) nF and C2 = 31.12(1) nF were used throughout.

Trial 1 2 3 4 5

R1 (kΩ) 9.88(5) 19.93(1) 4.749(1) 9.88(5) 9.88(5)
R2 (kΩ) 99.7(5) 99.7(5) 99.7(5) 202.59(2) 50.09(1)
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