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We study the dynamics of a piecewise-linear second-order delay differential equation that is rep-
resentative of feedback systems with relays (switches) that actuate after a fixed delay. The system
under study exhibits strong multirhythmicity, the coexistence of many stable periodic solutions for
the same values of the parameters. We present a detailed study of these periodic solutions and
their bifurcations. Starting from an integro-differential model, we show how to reduce the system
to a set of finite-dimensional maps. We then demonstrate that the parameter regions of existence
of periodic solutions can be understood in terms of discontinuity induced bifurcations and their
stability is determined by smooth bifurcations. Using this technique we are able to show that slowly
oscillating solutions are always stable if they exist. We also demonstrate the coexistence of stable
periodic solutions with quasiperiodic solutions.

PACS numbers:

I. INTRODUCTION

This paper is concerned with the dynamics of time-
delayed relay systems. Such systems have great practical
importance, as relay control-systems are applied in many
different areas of engineering. In relay control, the con-
trol signal is a piecewise constant function of the mea-
sured output, typically switching between just two val-
ues. In addition, the control signal is often delayed due
to finite signal transmission and processing times, sam-
pling delays, or other latencies in control loops. As a re-
sult, the controlled system is described by a nonsmooth
delay differential equation (DDE). Aside from control
applications, nonsmooth DDEs arise as descriptions of
naturally occurring systems for which nonlinearities are
well approximated by functions that take on discrete val-
ues [1, 2]. Due to their importance, nonsmooth DDEs
have been the focus of much recent attention [1–7].

Another reason to study relay systems is that ana-
lytic results become possible. Delay differential equations
have, generically, an infinite dimensional state space [8],
corresponding to the fact that the initial condition con-
sists of the history of the system over the entire delay
interval. The high-dimensionality makes the study of
DDEs challenging. Under relay feedback, the dynam-
ics can be reduced to the dynamics of finite dimensional
maps, which leads to significant simplifications of the an-
alytic treatment. The trade-off is that the interplay be-
tween the discontinuous relay feedback (switching) and
delay leads to new-types of bifurcation scenarios, so-
called discontinuity-induced bifurcations [7].

The dynamics of first order time-delayed relay systems
is well understood. Under some mild assumption on the
DDE, it can be shown that solutions will converge to an
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orbitally stable slowly oscillating periodic solution [3, 4].
However, first order systems are insufficient to describe

many naturally occuring phenomena and technological
applications. Often second order models are required to
capture the essence of the dynamics. Yet, the classifi-
cation of possible solutions of second order time-delayed
relay systems remains largely incomplete. Even informa-
tion concerning the properties of just the periodic solu-
tions is only partially answered, especially for arbitrary
choices of parameters.
For second order models, an interesting new possibility

arises in control applications because the relay signal can
now depend on two variables, e.g. the system position
and velocity [7].
In this papers we study one of the simplest generic

models, a linear second order time-delayed relay sys-
tems in which velocity serves as the feedback signal. We
show that the system demonstrates a complex bifurca-
tion structure with significant multirhythmicity, the co-
existence of multiple stable periodic solutions [9]. Due
to the combination of linear flow and piecewise-constant
feedback, the system can be reduced to a set of finite
dimensional maps. We use these maps to analytically
determine regions of existence and stability of periodic
solutions.

II. BACKGROUND

Second order linear DDEs with time delayed relay feed-
back have of the form

α ÿ + β ẏ + γ y = σ sign[g(y(t− τ), ẏ(t− τ))], (1)

where α, β, γ, τ are real constants, the dot denotes the
derivative with respect to time t, and σ = ±1 signi-
fies positive or negative feedback. The function g(y, ẏ) :
R2 → R divides the y, ẏ-plane into two domains, {g < 0}
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and {g ≥ 0} and the relay-nonlinearity is modeled as

sign(x) =


+1 x > 0

−1 x < 0

0 x = 0

. (2)

If parameters α, β are positive and γ is negative, then
Eq. (1) is analogous to an inverted pendulum with relay
feedback. The case where the delayed relay signal de-
pends on the position, g = y(t − τ), has been discussed
in [5]. It was shown that a unique stable periodic orbit
is possible under certain conditions on the parameters.
These conditions can be relaxed if the delayed relay sig-
nal depends not only position but velocity as well, as
shown in [7].

If parameters α, β, γ are positive, then Eq. (1) repre-
sents a harmonic oscillator with relay feedback. Such a
model with β = 0 and the delayed relay signal depending
on the position is discussed in [1, 10], with the model
originating from experimental studies on the pupil light
reflex [11]. A rich set of bifurcations and solutions was
identified [1].

In this paper we discuss Eq. (1) with positive param-
eters α, β, γ and the delayed relay signal depending on
the velocity. This situation was also considered in [6] in
an investigation of switch-mode power converters. Using
numerical case studies, the authors find periodic orbits
as well as smooth and discontinuity induced bifurcations
similar to our results. In contradistinction to their work,
we present explicit analytic solutions, which allow us to
develop a more complete picture of this system.

III. MODEL

We consider a delayed feedback system consisting of a
two-pole bandpass filter with scalar (dimensionless) out-
put x that is delayed by τ and passed through a relay,
with the resulting signal serving as the scalar input to
the bandpass filter.

A convenient form for a two-pole bandpass-filter
transfer-function, written in terms of angular frequency
ω, is

H(ω) =
1

1 + iQ (ω/ωc − ωc/ω)
, (3)

where ωc is the center angular frequency, i.e. the angular
frequency of maximum transmission with |H(ωc)| = 1,
and Q is the quality factor, defined as the ratio of the
center frequency and filter bandwidth [12]. The zero-
response (or natural-response) of the filter describes the
transient response of the filter due to nonzero initial con-
ditions. It is oscillatory if Q > 1/2, the underdamped
regime, and nonoscillatory if Q < 1/2, the overdamped
regime.

We can associate the following integro-differential

equation to the system

x+
Q

ωc

dx

dt
+Qωc

∫ t

x(s) ds = σ sign(x(t− τ)), (4)

where the RHS is the input signal to the bandpass filter
(LHS). We distinguish positive (σ = +1) and negative
(σ = −1) feedback.
For our analysis it is convenient to reference time to

the delay by introducing dimensionless time t via t = t/τ
and to introduce the parameter Ω, defined as the product
of the filter’s center frequency and the delay,

Ω = ωc τ. (5)

Furthermore, we introduce a variable y that satisfies ẏ =
QΩx, where the dot denotes the derivative with respect
to dimensionless time t. This yields the nonsmooth delay
differential equation

QΩ−1 ẋ = −x− y + σ sign(x(t− 1)) (6a)

ẏ = QΩx, (6b)

which is equivalent to Eq. (1) with g = ẏ(t − τ), α =
(τ/Ω)2, β = τ/(QΩ), and γ = 1. Model (6) depends on
two positive dimensionless parameters: (1) the quality
factor Q, set by the fractional bandwidth of the filter,
and (2) the parameter Ω. For a fixed center frequency, Ω
increases proportional to the delay. Alternatively, for a
fixed delay, Ω increases with the filter’s center frequency.
If Ω = 2π, then a sinusoidal signal with a period equal
to the delay τ has a frequency that coincides with the
filter’s center frequency. If Ω > 2π (Ω < 2π), then a
sinusoidal signal with period τ has a frequency smaller
(larger) than the center frequency and will be attenuated
by the filter.

IV. SAMPLE SOLUTIONS AND SYMBOLIC
REPRESENTATION

In order to solve the delayed relay system (6), we note
that it is sufficient to keep track of the headpoint coor-
dinates x(t), y(t) and the sign of x in the delay interval
or, equivalently, the times τn at which x crosses zero with
t−1 < τk < τk−1 < . . . < τ1 ≤ t. The state of the system
at time t is, therefore, captured by a tuple of finite but
variable length k + 2, (x, y; τ1, τ2, . . . , τk). The solution
can be obtained in terms of a discrete time map acting
on the state that maps between key events. There are
two key events that occur:

1. A zero element is added at time t = tn. When x
passes through zero, a zero element equal to tn is
added to the state; increasing the length of the tu-
ple by one. This event does not immediately cause
the relay feedback to change but it will switch the
sign of the feedback at time tn+1. Such an event is
denoted by the symbol Z if x transitions from x < 0
to x > 0 and by Z for the opposite transition.
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2. A zero-crossing time is removed from the history.
When τk(t) = t−1, τk is deleted from the state tu-
ple. The sign of the relay feedback switches. Such
an event is denoted by the symbolH if the feedback
switch is due to a transition from x(t − 1) < 0 to
x(t− 1) > 0 and by H for the opposite transition.

Between consecutive events, the feedback term is con-
stant, either +1 or −1. The evolution is given by the so-
lution of a linear ordinary differential equation. Explicit
solution of the ODE allows us to construct an iterative
map that moves the system forward in time from one
event to the next.

The ODE flow for constant feedback has a stable fixed
point that lies on the switching manifold and is either a
node (see Fig. 1a) or a spiral (see Fig. 1b). In the latter
case, trajectories are guaranteed to cross the switching
manifold such that solutions of DDE (6) are necessarily
oscillatory. In the former case, there are initial conditions
that result in non-oscillatory solutions to DDE (6), ones
that approach the fixed point without ever crossing the
switching manifold. In this paper we focus on oscillatory
solutions and will exclude such initial conditions from
consideration. We also exclude from consideration the
unstable trivial solution (x = y = 0).

To any oscillatory solution corresponds a symbolic-
sequence representing the events. Periodic solutions
are represented by a repeating sequence of events
[S1, S2, . . . , Sn] with Si ∈

{
H,H,Z,Z

}
. Since every

cyclic permutation of the repeating sequence represents
the same solution, we start all sequences with H, for the
sake of consistency.

To label distinct periodic solutions that have an iden-
tical symbol sequence, we define a discrete number – the
oscillation frequency ν, which is the number of x-zero
crossings on the unit time-interval of the delay preceding
a time t at which x(t) is zero. A periodic solution is said
to be slowly oscillating if ν = 0 and rapidly oscillating if
ν > 0.

We further label solutions by their symmetry. We
note that DDE (6) remains invariant under the opera-
tion (x, y) → (−x,−y). Periodic solutions that posses
this symmetry are called symmetric, otherwise they are
asymmetric. Asymmetric periodic solutions come in
symmetry-related pairs.

Thus, our scheme for labeling periodic solutions sym-
bolically is

[S1, S2, . . . , Sn]
s
ν (7)

with event symbols Si ∈
{
H,H,Z,Z

}
, frequency ν =

0, 1, 2, . . ., and symmetry label s ∈ {S,A} for symmetric
and asymmetric solutions, respectively.

As an example, we depict in Fig. 1 two periodic solu-
tions and, for each, indicate Z, Z events by circles andH,
H events by squares. The solution shown in Fig. 1(c) is a
symmetric solution with frequency ν = 2 and repeating
four-symbol sequence [H,Z,H,Z]S2 . The periodic solu-
tion in Fig. 1(d) is a symmetric ν = 3 solution with
symbol-sequence [H,Z,H,Z]S3 .
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FIG. 1: Periodic solutions for negative feedback (σ = −1):
(a),(b) projection onto x − y plane (black), ODE flows as-
sociated with a fixed constant sign of the relay term (blue
and purple), and switching manifold (grey); (c),(d) x(t) with
events indicated. (a),(c) Parameters: Q = 0.4, Ω = 7. Sym-
metric frequency-two solution [H,Z,H,Z]S2 . (b),(d) Param-
eters: Q = 1.5, Ω = 14, symmetric frequency-three solution
[H,Z,H,Z]S3 .

The frequency label ν can be related to the symbolic
representation by noting that every H (H) event is as-
sociated with a Z (Z) event one delay time in the past.
The frequency ν can be understood as the number of
Z/Z symbols in between. As an example, consider the
ν = 2 solution in Fig. 1(c). The H event at t = 0 that
is indicated by the filled square is associated with the Z
event at time t = −1 and there is one Z and one Z in
between.

V. PERIODIC SOLUTIONS

A periodic solution of Eq. (4) with period P and dis-
crete frequency ν will also be a solution of Eq. (4) if
the delay is changed to τ ′ = nP + τ (n = 1, 2, . . .)
because this mapping leaves Eq. (4) unchanged. With
respect to the delay τ ′, this periodic solution has a dis-
crete frequency ν′ > ν (for a 4-symbol symmetric so-
lution ν′ = ν + 2n). In terms of the dimensionless
DDE (6), this mapping implies xν′(t|Ω′, Q) = xν(t|Ω, Q).
Here, xν(t|Ω, Q) denotes a periodic solution of DDE (6)
with frequency ν and xν′(t|Ω′, Q) the corresponding ν′-
frequency solution of DDE (6) with the Ω parameter
changed to Ω′ = Ω + ωcnP . Under this mapping, the
Ω-interval of existence of xν(t|Ω, Q) results in a corre-
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FIG. 2: Stable symmetric periodic solutions in Ω–Q param-
eter plane for negative feedback. Each colored region corre-
sponds to a stable “mode.” At the boundaries (colored lines)
the modes are destabilized through bifurcations.

sponding interval of existence of the ν′-frequency solu-
tion. If these intervals overlap, the ν and ν′ frequency
solutions coexist, suggesting that DDE (6) may have an
infinite number of coexisting periodic solutions (since n
is arbitrary). While suggestive, it is necessary to study
solutions and their domain of existence in more detail in
order to confirm coexistence and determine stability.

Figures 2 and 3 demonstrate not only the presence of
coexisting periodic solutions, but strong multirhythmic-
ity of the system.

In Fig. 2 each color represents a mode of stable periodic
oscillations, where by a mode we mean a periodic solution
of DDE (6) that varies smoothly with parameters Q,Ω.
As seen by the overlapping regions in Fig. 2, there are
many stable periodic solutions that coexist. We note that
only the seven modes with the lowest frequency are shown
and additional overlaps would appear as more modes are
included.

In the underdamped regime (Q > 1/2) holding Q fixed
and changing Ω, periodic solutions are stable for a finite
Ω interval. This is consistent with the intuition that the
frequency of each oscillating mode should be commensu-
rate with the filter’s passband. Surprisingly, this intu-
ition fails for the overdamped regime (Q < 1/2).

In the overdamped regime, the number of coexisting
stable modes increases without bound as Ω increases, as
is indicated in Fig. 2, where the overlap of all colors (re-
sulting in brown) means that all the depicted modes are
stable. For this reason, multirhythmicity is particularly
pronounced.

To demonstrate the strong multirhythmicity in the
overdamped regime more clearly, we show in Fig. 3b the
inverse period as a function of Ω for the seven periodic
solutions [H,Z,H,Z]Sν with ν = 0, 2, 4, 6, 8, 10, 12 (bot-
tom to top) that correspond to the seven modes shown

(a)
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FIG. 3: Inverse period versus Ω for negative feedback and (a)
underdamped regime with Q = 1.5 (b) overdamped regime
with Q = 0.45 (shown by dashed lines in Fig. 2). Periodic
solutions: (thick line) stable, (thin line) unstable. Smooth bi-
furcations: (squares) Neimark-Sacker bifurcation, (diamonds)
pitchfork bifurcation. Discontinuity induced transitions: (cir-
cles) theH/H headpoint is at switching manifold, i.e. xH = 0.
Filter: (shaded region) passband as defined by 3dB frequen-
cies.

in Fig. 2. As Ω increases, all periodic solutions are sta-
bilized via torus bifurcations (Neimark-Sacker bifurca-
tions of the Poincaré map) and remain stable. As seen in
Fig. 3b, the periodic solutions remain stable even if their
fundamental frequency is well below the low-frequency
3dB cut-off of the filter. We argue that no additional
bifurcations occur for values of Ω beyond those shown in
Fig. 3b (see Sec. VIII). This, for a fixed filter and upon
recalling the definition of Ω given by Eq. (5), implies that
the number of coexisting stable modes continues to grow
as the delay τ is increased.

In contradistinction to the overdamped regime, in the
underdamped regime the periodic oscillations gain and
loose their stability as Ω increases. As seen in Fig. 3a,
there is a strong correspondence between the intervals
of Ω in which modes are stable and the passband of the
filter. The depicted symmetric periodic solutions gain
and loose their stability via Neimark-Sacker bifurcations,
the only exception is the lowest frequency mode, shown as
the red bottom most line in Fig. 3a, which loses stability
in a pitchfork bifurcation.

In Fig. 3a, circles indicate for each mode the values of
Ω at which the H/H headpoint is at the switching man-
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3

FIG. 4: Bifurcations of the ν = 2, 3-mode for negative feed-
back. (a) Ω–Q parameter plane (b) xH of ν = 2, 3-mode
(blue) versus Ω for Q = 1.5 with connecting asymmetric (red)
and 12-symbol (black) branches also shown. (Thick lines)
stable, (thin lines) unstable. Smooth bifurcations: Neimark-
Sacker (filled squares) and pitchfork (filled diamond). Discon-
tinuity induced transitions/corner collisions (circles). (Open
diamonds) see Fig. 5.

ifold, i.e. xH = 0. At the first such point (open circles)
the headpoint simply passes through the switching man-
ifold and the periodic solution continues to exist. How-
ever, the symbol sequence switches: [H,Z,H,Z]Sν with
ν = 0, 2, 4, 6, 8, 10 (bottom to top) becomes [H,Z,H,Z]Sν
with ν = 1, 3, 5, 7, 9, 11, respectively. For example, the
curve second from the bottom in Fig. 3a (blue curve)
is a single mode associated with periodic solution labels
[H,Z,H,Z]S2 and [H,Z,H,Z]S3 . We refer to this mode
as the ν = 2, 3 four-symbol symmetric mode. At the sec-
ond xH = 0 point of each mode (filled circles), there is
a discontinuity induced bifurcation and the mode ceases
to exist.

VI. BIFURCATION ANALYSIS

Next we turn to a detailed numerical bifurcation anal-
ysis of one of the modes, the ν = 2, 3-mode, in order to
elucidate stability regions, bifurcations, and boundaries
of existence. The bifurcation diagram produced is repre-
sentative, we find similar bifurcations for other modes.

For each symbol sequence and given discrete frequency
ν, the DDE reduces to a map with fixed dimension. The
fixed points of this map correspond to periodic orbits.
Orbit location and stability can be determined numeri-
cally by using the MatContM continuation software [13]
as well as analytically (see Sec. VIII for details).
In Fig. 4, we label bifurcations by the fixed point bi-

furcations of the map. The Neimark-Sacker (NS) and
pitchfork bifurcation (PF) curves in Fig. 4a are analytic
and coincide with curves obtained using numeric contin-
uation. Also given is the number of unstable directions,
i.e. the number of eigenvalues of the Jacobian of the
map with magnitude larger one. The parameter region
with zero unstable directions, including the two bounding
Neimark-Sacker bifurcation curves, corresponds to the re-
gion enclosed by blue curves in Fig. 2.
Fixing the parameter Q to Q = 1.5, we obtain the

curves in Fig. 4b via numeric continuation. Shown is the
value of x at theH event as a function of Ω. It is seen that
the ν = 2, 3-mode (blue) is stable (thick line) in between
the subcritical Neimark-Sacker bifurcation at Ω = 4.75
and the supercritical Neimark-Sacker bifurcation at Ω =
14.78. All other periodic solutions shown are unstable.
The conditions for construction of the finite dimen-

sional maps that capture solutions of the DDE are that
the projection of the solution onto the x-y-plane has the
following two properties:

1. The set of Z/Z-event points is finite and disjoined
from the set of H/H-event points.

2. The flows are transverse to the switching manifold
at all intersections.

If one of those conditions is violated a discontinuity in-
duced transitions occurs.
Due to the symmetry of DDE (6), the flow is always

transversal to the switching manifold, with the conse-
quence that all discontinuity induced transitions arise
due to a violation of condition (1).
The violation of condition (1) means that an H/H-

point of a solution reaches the switching manifold. Since
at an H/H-point the solution switches from one to the
other flow, the graph of the solution typically has a cor-
ner. For this reason, such discontinuity induced tran-
sitions are called corner collisions. We should mention
that the corner collisions in our system violate one of the
genericity conditions of Sieber [7] (condition 10b in [7])
due to the symmetry and perfect linearity of our system.
Nevertheless, the corner collisions in our system do fall
into the typical two main types:
In the first type, the part of the periodic orbit that

is close to the colliding H/H-point intersects the switch-
ing manifold transversally. That is, in the vicinity of the
H/H-point both flows cross the switching manifold in the
same direction. In this case, as the bifurcation param-
eter is changed, the headpoint moves smoothly through
the switching manifold, resulting in a smooth deforma-
tion of the periodic solutions. The mode, understood as a
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FIG. 5: Solutions corresponding to open diamonds in Fig. 4b
with H-event used for xH indicated by a solid square. 4-
symbol symmetric ν = 2, 3-mode: (a) Ω = 9.51, ν = 2 (b)
Ω = 10.79, ν = 3 (c) Ω = 20.46, ν = 3. 12-symbol symmetric
solution: (d) Ω = 20.46, ν = 10. Inset: detail showing that
xH is positive (solid square) and that there are additional x-
zero crossings close by (open circles).

periodic solution of the DDE, continues to exist. This is
shown in Fig. 5a and Fig. 5b. However, because the sym-
bol sequence switches and the number of zeros within the
delay interval increases, the corresponding map changes
discontinuously. Its dimension increases by one.

In the second type of corner collision, the part of the
periodic orbit that is close to the collidingH/H-point lies
entirely on one side of the switching manifold for bifur-
cation parameter values slightly below the critical value.
That is, in the vicinity of the H/H-point the two flows
cross the switching manifold in opposite directions. In
this case, the mode disappears in a discontinuity induced
bifurcation. This is shown in Fig. 5, where the 4-symbol
symmetric ν = 3 mode is shown in Fig. 5c and for the
same value of Ω a coexisting 12-symbol symmetric ν = 10
periodic solution is depicted in Fig. 5d. These two solu-
tions coincide and cease to exist at the critical value of
Ω.

Whereas discontinuity induced transitions of periodic
solutions of the DDE determine the range of validity of
the corresponding map of a particular fixed dimension,
standard smooth bifurcations of the periodic solutions
of the DDE correspond to standard bifurcations of fixed
points of the map.

In Fig. 6 we show that the pitchfork bifurcation of the
ν = 3 symmetric solution leads to a symmetry related
pair of asymmetric solutions (we only depict the branch
of one of the two solutions). The asymmetric solution
undergoes its own bifurcations, as seen in Fig. 6a. Al-
though these bifurcations reduce the number of unstable

16.22 16.24 16.26 16.28 16.3 16.32

-0.3

-0.25

-0.2

-0.15

-0.1

-1 -0.5 0 0.5 1
-2

-1

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

16.22 16.24 16.26 16.28 16.3 16.32

-0.3

-0.25

-0.2

-0.15

-0.1

-1 -0.5 0 0.5 1
-2

-1

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

(a) (b)

(c)

<latexit sha1_base64="INN8Kv9clQMWpwWaQYBZDEiqA5g=">AAACCHicbVC7SgNBFJ31GddXfHQ2g0GwCrsiamdAUMsI5iHJEmYns8mQ2Qczd8W47A/Y2uoviIUgtv6Fpa1f4WySwiQeGDicc19z3EhwBZb1ZczMzs0vLOaWzOWV1bX1/MZmVYWxpKxCQxHKuksUEzxgFeAgWD2SjPiuYDW3d5b5tVsmFQ+Da+hHzPFJJ+AepwS0dNMEdgdJ+Txt5QtW0RoATxN7RAqnb/ffFy/bSbmV/2m2Qxr7LAAqiFIN24rASYgETgVLzWasWERoj3RYQ9OA+Ew5yeDgFO9ppY29UOoXAB6ofzsS4ivV911d6RPoqkkvE//zGjF4J07CgygGFtDhIi8WGEKc/R63uWQURF8TQiXXt2LaJZJQ0BmNbclmS+WpFJumDseejGKaVA+K9lHx8MoqlCw0RA7toF20j2x0jEroEpVRBVHko0f0hJ6NB+PVeDc+hqUzxqhnC43B+PwFhWKd4Q==</latexit>

PF

<latexit sha1_base64="lj+Et3MXwzMA+GwWaK97iWccxGA=">AAACCHicbVC7SgNBFJ31GddXfHQ2g0GwCrsiamdAQcsI5iHJEmYns8mQ2Qczd8W47A/Y2uoviIUgtv6Fpa1f4WySwiQeGDicc19z3EhwBZb1ZczMzs0vLOaWzOWV1bX1/MZmVYWxpKxCQxHKuksUEzxgFeAgWD2SjPiuYDW3d5b5tVsmFQ+Da+hHzPFJJ+AepwS0dNMEdgdJ+Txt5QtW0RoATxN7RAqnb/ffFy/bSbmV/2m2Qxr7LAAqiFIN24rASYgETgVLzWasWERoj3RYQ9OA+Ew5yeDgFO9ppY29UOoXAB6ofzsS4ivV911d6RPoqkkvE//zGjF4J07CgygGFtDhIi8WGEKc/R63uWQURF8TQiXXt2LaJZJQ0BmNbclmS+WpFJumDseejGKaVA+K9lHx8MoqlCw0RA7toF20j2x0jEroEpVRBVHko0f0hJ6NB+PVeDc+hqUzxqhnC43B+PwFgiid3w==</latexit>

PD

<latexit sha1_base64="upVKhzF9Nm/jJFsXUPiPLJR3+NA=">AAACCHicbVA5SwNBGJ2NV1yveHQ2g0GwCruCR2fAQiuJaA5JQpidzCZDZg9mvhXjsn/A1lb/glgIYuu/sLT1VzibpDCJDwYe733XPCcUXIFlfRmZmdm5+YXsorm0vLK6llvfqKggkpSVaSACWXOIYoL7rAwcBKuFkhHPEazq9E5Tv3rLpOKBfw39kDU90vG5yykBLd00gN1BfHWRtHJ5q2ANgKeJPSL5k7f777OXrbjUyv002gGNPOYDFUSpum2F0IyJBE4FS8xGpFhIaI90WF1Tn3hMNePBwQne1Uobu4HUzwc8UP92xMRTqu85utIj0FWTXir+59UjcI+bMffDCJhPh4vcSGAIcPp73OaSURB9TQiVXN+KaZdIQkFnNLYlnS2VqxJsmjocezKKaVLZL9iHhYNLK1+00BBZtI120B6y0REqonNUQmVEkYce0RN6Nh6MV+Pd+BiWZoxRzyYag/H5C5d2ne0=</latexit>

SN<latexit sha1_base64="TjVr+mwjqW/zjlrSrjaPEpfoEck=">AAACAnicbVC7TgJBFL2Liri+UEubicTEiuyS+ChJbCghyiOBDZkdZmHC7CMzs0ayobO1sMFPMLEztn6Bf2D8A7/CWaAQ8CSTnJxzX3PciDOpLOvLyKytb2Q3c1vm9s7u3n7+4LAhw1gQWichD0XLxZJyFtC6YorTViQo9l1Om+7wOvWbd1RIFga3ahRRx8f9gHmMYKWlm/tupZsvWEVrCrRK7DkplLO178/J00u1m//p9EIS+zRQhGMp27YVKSfBQjHC6djsxJJGmAxxn7Y1DbBPpZNMTx2jU630kBcK/QKFpurfjgT7Uo58V1f6WA3kspeK/3ntWHlXTsKCKFY0ILNFXsyRClH6b9RjghLFR5pgIpi+FZEBFpgonc7ClnS2kJ4cI9PU4djLUaySRqloXxTPazqlEsyQg2M4gTOw4RLKUIEq1IFAHx5hAs/Gg/FqvBnvs9KMMe85ggUYH7/HR5tQ</latexit> x
H

<latexit sha1_base64="6h7jiM+5k0cbtxqjxUkAWxDG6u0=">AAACBXicbVC7SgNBFL3rM66vqKXNYBCswm7ARyMGbOyMYB6QLGF2MpuMmZ1dZmaFsKS2tdXW2k609DPEX/ArnE1SmMQDA4dz7muOH3OmtON8WwuLS8srq7k1e31jc2s7v7NbU1EiCa2SiEey4WNFORO0qpnmtBFLikOf07rfv8z8+j2VikXiVg9i6oW4K1jACNZGqrWuQ9rF7XzBKTojoHniTkjh4sM+j1++7Eo7/9PqRCQJqdCEY6WarhNrL8VSM8Lp0G4lisaY9HGXNg0VOKTKS0fXDtGhUTooiKR5QqOR+rcjxaFSg9A3lSHWPTXrZeJ/XjPRwZmXMhEnmgoyXhQkHOkIZV9HHSYp0XxgCCaSmVsR6WGJiTYBTW3JZksVqCGybROOOxvFPKmViu5J8fjGKZRLMEYO9uEAjsCFUyjDFVSgCgTu4BGe4Nl6sF6tN+t9XLpgTXr2YArW5y/d5pu7</latexit>

⌦
<latexit sha1_base64="0gBHCh0v3kqD80JZPQABTCc6RNE=">AAACAHicbVC7SgNBFL3rM66vqKXNYBCswm7ARyMGbCwTMA9IljA7mU2GzM4uM7NiWNLY2uoX2NiJleCPiL/gVzibpDCJBwYO59zXHD/mTGnH+baWlldW19ZzG/bm1vbObn5vv66iRBJaIxGPZNPHinImaE0zzWkzlhSHPqcNf3Cd+Y07KhWLxK0extQLcU+wgBGsjVS97+QLTtEZAy0Sd0oKVx/2ZfzyZVc6+Z92NyJJSIUmHCvVcp1YeymWmhFOR3Y7UTTGZIB7tGWowCFVXjo+dISOjdJFQSTNExqN1b8dKQ6VGoa+qQyx7qt5LxP/81qJDi68lIk40VSQyaIg4UhHKPs16jJJieZDQzCRzNyKSB9LTLTJZmZLNluqQI2QbZtw3PkoFkm9VHTPiqdVp1AuwQQ5OIQjOAEXzqEMN1CBGhCg8AhP8Gw9WK/Wm/U+KV2ypj0HMAPr8xc5TZm8</latexit>x

<latexit sha1_base64="Gz21Lgk8w3unopGNN22t2j6rkEI=">AAACCnicbVBJSgNBFK12jO0UdemmMAiuQnfAYSMG3LiMkAmSEKorv5Mi1QNVv8XQ5AZu3erCG7gRcesdxCt4CivDwiQ+KHi896d6XiyFRsf5tpaWV1bX1jMb9ubW9s5udm+/qqNEcajwSEaq7jENUoRQQYES6rECFngSal7/euTX7kBpEYVlHMTQClg3FL7gDI3UaCLcY1oWAQzb2ZyTd8agi8SdktzVm30Zv3zZpXb2p9mJeBJAiFwyrRuuE2MrZQoFlzC0m4mGmPE+60LD0JAFoFvp+OQhPTZKh/qRMi9EOlb/dqQs0HoQeKYyYNjT895I/M9rJOhftFIRxglCyCeL/ERSjOjo/7QjFHCUA0MYV8LcSnmPKcbRpDSzZTRbaV8PqW2bcNz5KBZJtZB3z/Knt06uWCATZMghOSInxCXnpEhuSIlUCCcReSRP5Nl6sF6td+tjUrpkTXsOyAysz1+APJ5Q</latexit>

Time

FIG. 6: Detail of asymmetric solution [H,Z,H,Z]A3 created
via a pitchfork bifurcation (PF). (a) Zoom of Fig. 4b near PF:
(PD) period doubling bifurcation, (SN) Saddle-Node bifurca-
tion, (open diamond) solution shown in (b) and (c).

eigenvalues, the solution remains unstable. The asym-
metry is apparent in the x− y projection of Fig. 6b and
the timetrace depicted in Fig. 6c. Similarly to the sym-
metric solutions, when the H-point of the asymmetric
solution reaches the switching manifold (xH → 0), the
solution disappears in a discontinuity induced bifurca-
tion (see Fig. 4b).
We note that asymmetric solutions can be stable, such

as the asymmetric solutions created via the ν = 0, 1-
mode’s pitchfork-bifurcation that is shown as a diamond
symbol on the lowest (red) curve in Fig. 3a.

VII. QUASIPERIODIC SOLUTIONS

Supercitical Neimark-Sacker bifurcations suggest the
existence of stable quasiperiodic solutions of DDE (6).
We indeed find such solutions, as shown in Fig. 7a, where
we plot 105 iterates of the discrete map betweenH events
for Q = 1.5 and several values of Ω. Initial iterates asso-
ciated with the transient approach of the attractor were
discarded. For values of the parameter slightly larger
than the supercritical Neimark-Sacker bifurcation value
(Ω = 14.78), the map iterates form a closed curve, in-
dicating the existence of a torus attractor of DDE (6).
The size of the torus grows smoothly as Ω is increased,
as shown in the inset of Fig. 7a. Numerically we were
unable to find a stable torus attractor for values greater
than Ω = 14.84. It would be interesting to determine
the cause and explain the peculiar attractor shape at the
largest value of Ω, but we did not pursue this question.
By using previous solutions as initial conditions and

changing both Q and Ω by small increments, it is possi-
ble to follow the largest torus attractor to Q = 1.93 and
Ω = 14.56. For these parameters, the torus attractor co-
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FIG. 7: Quasiperiodic solutions for negative feedback (σ =
−1). Projection onto xH − yH plane. (a) Supercritical
Neimark-Sacker bifurcation of 4-symbol symmetric ν = 3 pe-
riodic solution (filled square in Fig. 4). Parameters: Q = 1.5
and Ω ranging from 14.78 to 14.84. Inset: yH along the dashed
line as a function of Ω . (b) Coexisting stable 4-symbol sym-
metric ν = 3 periodic solution and stable quasiperiodic solu-
tion for Q = 1.93 and Ω = 14.56.

exists with the stable periodic solution, which we show
in Fig. 7b. For fixed Q = 1.93, stable torus attractors
of growing amplitude are still created via a supercriti-
cal Neimark-Sacker bifurcation of the periodic solution
as Ω is increased past the bifurcation value. However,
the torus curve then “folds back,” such that large ampli-
tude torus attractors exist for Ω values smaller than the
bifurcation value, leading to the coexistence depicted in
Fig. 7b.

Thus, we find rich dynamics in the underdamped
regime. Not only are multiple stable periodic solutions
present (multirhythmicity) but there are also parameter
regions where, in addition, stable quasiperiodic solutions
coexist.

In the overdamped regime, all of the Neimark-Sacker
bifurcations found are subcritical. We were not able to lo-
cate any stable torus attractors but cannot exclude their
existence. What we find is strong multirhythmicity, a
large number of stable coexisting periodic solutions for
large Ω.

VIII. THEORY

The DDE (6) is reduced to discrete-time finite dimen-
sional mappings between events by exploiting the linear-
ity of the system to explicitly calculate the flow for times
in between events. Defining the headpoint at time t = 0
with v = (x, y)T , the flow is given by

Φ+(t,v) = A(t)v + b(t) (8)

if σ · sign(x(−1)) = +1 and by

Φ−(t,v) = A(t)v − b(t). (9)

if σ · sign(x(−1)) = −1. Here,

A(t) = e−µt

(
cos(ωt)−

µ sin(ωt)
ω − 2µ sin(ωt)

ω
µ2+ω2

2µ
sin(ωt)

ω cos(ωt)+
µ sin(ωt)

ω

)
(10)

and

b(t) =

(
e−µt 2µ sin(ωt)/ω

1− e−µt (cos(ωt) + µ sin(ωt)/ω)

)
(11)

and we introduced the abbreviations

µ =
Ω

2Q
ω = Ω

√
4Q2 − 1

2Q
. (12)

The damping constant µ is positive definite, whereas ω
is positive real if Q > 1/2 but imaginary if Q < 1/2.

In the latter case, ω = i|ω| = Ω
√
1− 4Q2/(2Q) and

in Eq. (10) and Eq. (11) one may use the identities
cos(ωt) = cosh(|ω|t) and sin(ωt)/ω = sinh(|ω|t)/|ω|. The
flow Φ± has a single stable fixed point at v∗ = (x, y)T =
(0,±1), which is a spiral if Q > 1/2 (underdamped
regime) and a node if Q < 1/2 (overdamped regime).
As an example of a mapping between events, let us

consider a time tn at which there is a Z-type event, such
that x(tn) = 0, and assume σx(tn − 1) < 0 as well as
ν > 0, meaning that there is at least one zero crossing in
the history interval. Whether the next event is of H-type
or Z-type is determined by evaluating the time required
to reach either event under the assumption that the feed-
back sign does not switch and then picking the event that
occurs first. The time interval to the subsequent H-type
event is

δ = τν + 1− tn, (13)

whereas the time interval z to the next Z-type event is
determined by solving(

0
y

)
= Φ−(z,vZ) (14)

for the smallest positive z. Here, vZ = (0, yZ)
T is the

Z-headpoint at time tn. The map to the headpoint of
the next event is then

v = Φ−(min{δ, z},vZ). (15)

In addition to updating the headpoint, the times of zero
crossings in the history interval need to be updated. If an
H-type event follows the Z-type event (δ < z), then the
number of zero crossings is unchanged because one zero
crossing is removed and another added. If a Z-type event
follows (z < δ), then the dimension of the state-vector is
increased by one. Similarly, if two H-type events follow
one another, then the number of zero crossings and the
dimension of the state-vector are reduced by one.

Stable periodic solutions of the DDE (6) that were
found numerically are all of the same type; they all are
symmetric 4-symbol solutions consisting of alternating
H-type and Z-type events. As stable solutions are im-
portant for applications, we provide next details about
the relevant Poincaré map, its fixed points and their bi-
furcations.
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tn+1

FIG. 8: Time intervals Tj,n (j = 1 . . . ν), δn, and zn. Also
shown, the time intervals after one iteration of the state vec-
tor, sn+1 = M+

ν (sn).

A. Map of four symbol symmetric solutions

We consider 4-symbol periodic solutions of DDE (6)
with a symbol sequence consisting of alternating H-type
and Z-type events, that is, either a repetition of the se-
quence H,Z,H,Z or of H,Z,H,Z. These solutions cor-
respond to fixed points of a Poincaré map Pν that maps
the solution forward by 4-events per step.

Since these solutions have alternating H-type and Z-
type events, the discrete frequency ν, which counts the
number of zero crossings in the history, remains constant.

Although we found it advantageous to keep track of H
head-points and their position relative to the switching
manifold when doing numerics, in terms of theory it is
convenient to map between Z-type events, in which case
the ν+1 independent variables can be chosen to be the ν
time intervals between x-zero-crossings and the y coordi-
nate of the headpoint. The x coordinate of the Z-event
headpoint is zero by definition.

In particular, let us consider a solution at some Z-
type instance t = tn, meaning x(tn) = 0. Furthermore,
assume that σx(tn−1) < 0 and there are ν zero crossings
of x of the history function at times τj with j = 1 . . . ν
and τj ∈ (tn − 1, tn). Let Tj,n denote the ν time inter-
vals between x-zero-crossings, i.e. T1,n = tn − τ1 and
Tj,n = τj−1 − τj for j = 2, . . . , ν (see Fig. 8). Denote the
headpoint time tn by vZ,n = (0, yZ,n)

T and define the
(ν + 1)-dimensional state vector as

sn = (yZ,n, T1,n, T2,n, . . . , Tν,n)
T . (16)

The headpoint of the subsequent Z-type event is given
by the map

vZ,n+1 = Φ+(zn,Φ−(δn,vZ,n)). (17)

The flow Φ− shifts the solution until the next sign change
of x(t − 1), which is an H event for positive feedback
(σ = 1) and an H event for negative feedback (σ = −1),
with the time interval to the crossing being

δn = 1−
ν∑

j=1

Tj,n = 1−
ν+1∑
i=2

si,n, (18)

if ν > 0 and δn = 1 if ν = 0. The flow Φ+ then shifts
the solution to the subsequent Z-type event. The time

interval for this mapping is

zn(sn) =
1

ω
arctan

(
e−µδn sin(ωδn)(yZ,n + 1)

2− e−µδn cos(ωδn)(yZ,n + 1)

)
.

(19)

Utilizing the head-point mapping given by Eq. (17),
we define a map M+

ν that updates the state vector, im-
plementing the two-symbol Z-to-Z shift,

M+
ν (sn) = (yZ,n+1, δn + zn, T1,n, . . . , Tν−1,n)

T . (20)

The map M+
ν is frequency preserving because one zero is

removed and one zero is added to the history. In addition,
denote withM−

ν the corresponding two-symbol shift map
which advances the solution through one more H-type
event to the subsequent Z-type event.
The symmetry of DDE (6) means that one can express

M−
ν in terms of M+

ν by defining the operation of a sign
flip as

Rν(sn) ≡ Rsn (21)

with R being a (ν + 1) × (ν + 1) diagonal matrix with
R11 = −1 and Rjj = 1 (j = 2, . . . , ν + 1). Then

M−
ν = Rν ◦M+

ν ◦ Rν . (22)

Therefore, the Pointcaré map Pν that maps a four-
symbol ν-frequency solution forward by four symbols is

Pν = Rν ◦M+
ν ◦ Rν ◦M+

ν = (Rν ◦M+
ν )

2. (23)

To investigate symmetric periodic solutions it suffices to
study the fixed points of the map Mν = Rν ◦M+

ν . Ex-
plicitely, sn+1 = Mν(sn) is

s1,n+1 = −1 + 2 cos(ωzn) e
−µzn−

− (s1,n + 1) cos(ω[δn + zn]) e
−µ[δn+zn]

s2,n+1 = δn + zn

s3,n+1 = s2,n

...

sν+1,n+1 = sν,n

(24)

if ν > 0. The slowly oscillating solutions (ν = 0) are
governed by the map

s1,n+1 = −1 + 2 cos(ωzn) e
−µzn

− (s1,n + 1) cos(ω[1 + zn]) e
−µ[1+zn]. (25)

B. Fixed Points

Symmetric periodic solutions with discrete period ν
are fixed points of Mν . Consistent with the symme-
try requirement, the simple structure of Mν immediately
confirms that the fixed point solutions have equal time-
intervals between x-zero-crossings. We denote this time
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interval, the switching interval, by T ∗. It is half of the
period Pν of the corresponding four-symbol symmetric
periodic solution, i.e. T ∗ = Pν/2. The period satisfies
the constraint

2

ν + 1
< Pν <

2

ν
. (26)

The switching time is the sum of the non-negative time
δ∗ to the next sign-switch of the feedback and the non-
negative time z∗ to the subsequent zero crossing, T ∗ =
z∗ + δ∗.
In the underdamped regime (Q > 1/2), the ODE-flow

Φ± crosses the switching manifold repeatedly, and one
needs the inequalities

z∗ = (ν + 1)T ∗ − 1 < π/ω (27)

and

δ∗ = 1− ν T ∗ < π/ω. (28)

to ensure that the map’s fixed point corresponds to
a symmetric periodic solution with alternating H-type
and Z-type events, as required by the assumptions
made in deriving the map Mν . Recalling that ω =

Ω
√
4Q2 − 1/(2Q), the inequalities mean that, for a fixed

non-negative integer ν, the corresponding symmetric pe-
riodic solution only exists in some region of Ω, Q param-
eter space (see Fig. 2 and Fig. 3a).

In the overdamped regime (0 < Q < 1/2), the ODE-
flow Φ± can cross the switching manifold at most once
and no limits on T ∗ exist. Instead there are limits on
the discrete frequency, ν must be even if the feedback is
negative (σ = −1) and odd if the feedback is positive
(σ = +1). The implication is that there exists a sym-
metric periodic 4-symbol solutions for any even (odd)
non-negative integer ν in the case of negative (positive)
feedback. The seven lowest frequency modes for negative
feedback are shown in Fig. 3b.

Assuming above conditions are satisfied, the state-
vector of the fixed-point is

s∗ = (y∗Z , T
∗, . . . , T ∗)

T
, (29)

(s∗ = y∗Z if ν = 0) with the switching interval T ∗ given
implicitly by the (smallest) positive root of

tan (ω[(ν + 1)T ∗ − 1]) =
sin(ωT ∗)

eµT∗ + cos(ωT ∗)
(30)

and the y-coordinate of the Z-type event being

y∗Z = −1 +
2

eµz∗ cos(ωz∗) + e−µδ∗ cos(ωδ∗)
. (31)

C. Corner Collisions

In terms of the fixed points of map Mν , corner colli-
sions occur if one of the conditions Eq. (27) and Eq. (28)

is violated. In such a case, there no longer exists a valid
fixed point of Mν . The corresponding periodic solution
of the DDE (6) may cease to exist due to a bifurcation or
it may continue to exist but correspond to a fixed point
of a different map, such asMν′ with ν′ ̸= ν. Mν exhibits
both types of corner collisions:

(1) As ω approaches ω → (ν+1)π from below, we find
that condition (28) is violated because δ∗ → 1

ν+1 (and

z∗ → 0). TheH/H-event point of the symmetric periodic
solution approaches the switching manifold and collides
with the Z/Z-event point of the periodic solution. That
is, as the parameter ω is increased from below to above
ω = (ν + 1)π, the headpoint of the 4-symbol symmetric
periodic moves through the switching manifold and the
ordering of the 4-symbol sequence changes due to Z/Z
and H/H symbols exchanging places. Furthermore, the
number of zero crossings ν in the unit delay interval in-
creases by one, such that one needs to consider the fixed
points of the map Mν+1 in order to continue the periodic
solution.

(2) As ω approaches ω → (2ν + 1)π from below, we
find that conditions (27) and (28) are violated because
z∗ → 1

2ν+1 and δ∗ → 1
2ν+1 . The H/H-event point

approaches the switching manifold but does not collide
with a previously existing Z/Z-event point. Instead, the
4-symbols symmetric periodic solution collides with an-
other “nearby” periodic solutions and ceases to exist.

Nearby periodic solutions must be solutions with sym-
bol sequences of more than 4-symbols per period, such
as 8, 12, 16, . . . symbols. We find that there exists a sym-
metric 12-symbol periodic solution that coexists with the
4-symbol periodic solution and collides with it at the crit-
ical value of ω. One may view this 12-symbol solution as
a fixed point of the third iterate of Mν , one that is dis-
tinct from the fixed point of Mν . We omit the algebra,
but show in Fig. 4 the numerical continuation of a 12-
symbol solution that was obtained analytically.

D. Smooth Bifurcations

In addition to discontinuity induced transitions, the
stability of a symmetric 4-symbol periodic solutions can
change due to smooth bifurcations. These correspond
to standard bifurcations of the fixed points of the map
Mν . Bifurcation curves in parameter space are found
by determining the characteristic roots of Mν linearized
about the fixed point. Since the Poincare map of sym-
metric periodic solutions is Pν = M2

ν , it is the square of a
characteristic root of Mν that determines the bifurcation
type.

We find that the Jacobian of the map Mν , given by
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Eq. (24), has the form

DMν =



a b b . . . b b b
c d d . . . d d d
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0

. . .

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


(32)

with coefficients given in App. A. The (ν + 1) roots λ
that satisfy

0 = |DMν − λI| (33)

are solutions to the characteristic equation

0 = [(a−1)d− bc]
1− λν

1− λ
+ d− (a+ d)λν + λν+1, (34)

as shown in App. B.
We first consider ν = 0 periodic solutions, slowly os-

cillating solutions. In this case, the characteristic equa-
tion reduces to λ = a. It can be shown that |a| < 1 (see
App. C), implying that the characteristic roots have mag-
nitude less than one independent of the choice of param-
eters. The slowly oscillating solutions are always locally
stable.

We consider next bifurcations of the rapidly oscillating
symmetric 4-symbol periodic solutions (ν > 0), focus-
ing on those bifurcations that were found numerically,
namely pitchfork and Neimark-Sacker bifurcations. We
provide expressions that not only allow the bifurcation
curves to be determined analytically but enable us to
specify parameter regions where bifurcations cannot oc-
cur.

Pitchfork bifurcations are associated with a character-
istic root equal to +1 of the Poincaré map Pν and arise
instead of a generic saddle-node bifurcation due to the
inversion-symmetry of DDE (6). One needs to consider,
therefore, whether there exist curves in parameter space
along which Mν has a characteristic root that is either
λ = 1 or λ = −1. As shown in App. D, there exists no
solution λ = 1 of Eq. (34); pitchfork bifurcations are as-
sociated with a characteristic value λ = −1. In this case,
Eq. (34) reduces to

0 = −a− 1 if ν even (35a)

0 = (1 + d) + e−2µT∗
if ν odd, (35b)

where we made use of the identity Eq. (A6). The equality
Eq. (35a), covering the case of even ν, cannot be satisfied
because |a| < 1. The equality Eq. (35b), covering the case
of odd ν, cannot be satisfied in the overdamped regime
nor in the underdamped regime if ωT ∗ < π because under
these conditions it can be shown that d + 1 > −e−2µT∗

(see App. E). Thus, a pitchfork bifurcation can occur
only if the requirements (1) ν is odd and (2) ωT ∗ > π
are simultaneously satisfied, which is only possible for

negative feedback. No pitchfork bifurcation of symmet-
ric periodic solutions can occur if the feedback is positive.
For negative feedback, an example of a pitchfork bifurca-
tion curve found by solving Eq. (35b) is shown in Fig. 4a
(the analytically determined curve and bifurcation curve
obtained numerically coincide). As seen in this example,
the pitchfork bifurcation of the symmetric periodic solu-
tion gives rise to a pair of asymmetric periodic solutions
(Fig. 6).
Neimark-Sacker bifurcations are associated with pairs

of complex conjugate roots of magnitude one. Accord-
ingly, we seek parameter values for which λ = eiϕ with
ϕ ∈ (0, π) is a solution to the characteristic equation. Af-
ter some algebraic manipulation and separation of imag-
inary and real parts, we obtain

0 =
[
f1 + cosϕ

] sin(ν+1
2 ϕ

)
sin
(

ϕ
2

) + f2 cos
(ν
2
ϕ
)

(36a)

0 = sin

(
ν + 1

2
ϕ

)
cos

(
ϕ

2

)
+ f3 sin

(ν
2
ϕ
)
, (36b)

where f1, f2 and f3 are functions of Ω andQ (see App. F).
We utilize Eq. (36b) to obtain ϕ as a function of the two
parameters, ϕ = ϕn(Ω, Q), where n labels the complex-
root pair. Substitution of ϕn into Eq. (36a) allows us
then to find the Neimark-Sacker bifurcation curves in
the (Ω, Q) parameter plane for each of the complex-root
pairs.
Examples of Neimark-Sacker bifurcation curves are

seen in Fig. 4a for the case of negative feedback. There is
one curve for the ν = 2 periodic solution, which has a 3-
dimensional Poincaré map, and two curves for the ν = 3
periodic solution, which has a 4-dimensional Poincaré
map.
In the overdamped regime, symmetric solutions with

ν > 0 are unstable for small Ω and become stable after
undergoing an appropriate number of Neimark-Sacker bi-
furcations as Ω is increased (see Fig. 3b). Numerically,
we find that the ν + 1 roots λ of the characteristic equa-
tion for Q < 1/2 remain inside the unit circle in the
limit Ω → ∞. Thus, in the overdamped regime, each
mode first becomes stable and then retains stability as Ω
is increased. The number of stable coexisting solutions
grows with Ω. That is, for any chosen discrete frequency
ν∗, there is a sufficiently large Ω such that all symmet-
ric 4-symbol periodic solutions with even (odd) ν smaller
or equal to ν∗ are stable and coexist if the feedback is
negative (positive).

IX. DISCUSSION

In this paper we advance the understanding of peri-
odic solutions that arise in second order linear DDEs
with relay feedback. The DDE discussed is a represen-
tative model of systems with a delayed and bandpass
filtered relay-type feedback signal. It also represents ap-
plications that exhibit approximate harmonic oscillator
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type dynamics and have a time delayed relay feedback of
the velocity signal.

We show that it is useful to distinguish the under-
damped and overdamped regime. In the overdamped
regime all stable solutions found are periodic, whereas
a much richer solution and bifurcation structure exists
in the underdamped regime. For example, when under-
damped, stable periodic orbits can coexist with stable
quasiperiodic solutions. In either regime, the system ex-
hibits strong multirhythmicity. In terms of applications
in which such systems serve as signal generators, this
means that they are able to produce a large number of
distinct periodic modes. These modes can be accessed
either by controlling initial conditions or through param-
eter tuning.

Similar to first order delayed relay systems, the slowly
oscillating solution of DDE (6) is always stable if it exists.
The slowly oscillating solution exists for all parameters
in the overdamped regime if the feedback is negative. It
also exists in the underdamped regime, both for positive
and negative feedback, if Ω is sufficiently small.

In this paper we have restricted our investigation to
a linear second order DDE with symmetry. This signifi-
cantly simplified the analytic treatment. If symmetry is
lifted, then smooth bifurcations are expected to unfold
in the usual way. For example, pitchfork bifurcations of
periodic-solution fixed-points will unfold into correspond-
ing saddle-node bifurcations, similar to what is found in
[1]. The lifting of the symmetry, for example by mov-
ing the ODE fixed points off of the switching manifold,
would also affect discontinuity induced transitions. Tan-
gential grazing bifurcation [7] become possible [6]. The
techniques described in this paper can be extended in a
straightforward way to the asymmetric case.

The linearity of the ODEs governing the dynamics of
DDE (6) permits an explicit construction of finite di-
mensional maps. For nonlinear ODEs, maps can be con-
structed near periodic orbits [7] but global results are
more difficult to obtain. Nevertheless, the behavior of
the linear system is a good starting point for studies of
related models with nonlinearities.

An interesting extension of our work would be to con-
sider relays that feature intrinsic hysteretic behavior as
well as delay [14], as this is a good model of many con-
trol elements used in practice. It would also be fruitful
to explore the dynamics of DDE (6) with the step-like
relay nonlinearity replaced by a smoothed version, be-
cause infinitely sharp step functions are not achievable in
most applications. One often finds good correspondence.
As an example, climate phenomena described by a DDE
model containing a sigmoidal type nonlinearity was stud-
ied numerically in [15, 16] and the numerically observed
behavior of the smooth DDE could be explained by anal-
ysis of a nonsmooth DDE that resulted from replacing the
sigmoidal nonlinearity with a switching function [2]. Sim-
ilarly, a second order DDE related to the pupil light re-
flex was investigated hand-in-hand with a related smooth
system in [1]. While the dynamics in the vicinity of the

nonsmooth bifurcations is strongly changed under tran-
sition to the smoothed system, these changes happen in
a controlled manner allowing one to establish a clear con-
nection. It would be valuable to explore the correspon-
dence of smooth and nonsmooth dynamics for DDE (6).
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Appendix A: Coefficients of Jacobian

The coefficients of the Jacobian matrix of the map Mν

are

a = −e−µT∗
[
cos(ωT ∗) +

µ

ω
sin(ωT ∗)

]
(A1)

b = −(µ2 + ω2)(y∗Z + 1)
e−µT∗

ω
sin(ωT ∗) (A2)

c =
1

(y∗Z + 1)

e−µT∗

ω
sin(ωT ∗) (A3)

d = −1−
[
cos(ωT ∗)− µ

ω
sin(ωT ∗)

]
e−µT∗

(A4)

and we note the following useful identities

[(a− 1)d− bc] = 1 + 2 cos(ωT ∗) e−µT∗
+ e−2µT∗

(A5)

[a(d+ 1)− bc] = e−2µT∗
. (A6)

Appendix B: Computation of the characteristic
equation

Consider the determinant of the ν × ν matrix

A =



−λα 0 . . . 0 0 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

 .

If, when evaluating the determinant, one pulls out α,
pulls out λ−1 from the second row, λ−2 from the third
row, λ−3 from the forth row, etc., and, subsequently, adds
the first to the second row, the second to the third row,
and so forth; then one obtains

detA =
α

λ(ν−1)ν/2

∣∣∣∣∣∣∣∣∣∣

−λ 0 . . . 0 α−1

0 −λ2 . . . 0 α−1

. . .

0 0 . . . −λν−1 α−1

0 0 . . . 0 α−1 − λν

∣∣∣∣∣∣∣∣∣∣
,
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which is upper triangular and evaluates to

detA = (−1)ν−1(1− αλν). (B1)

The determinant

∆(β) =

∣∣∣∣∣∣∣∣∣∣∣∣

β 1 . . . 1 1 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
can be obtained by pulling out (1 − λ)−1 from the first
row, followed by subtraction of all rows other than the
first from the first row, yielding

∆(β) =
1

1− λ

∣∣∣∣∣∣∣∣∣∣∣∣

β − 1− βλ 0 . . . 0 0 1
1 −λ . . . 0 0 0
0 1 . . . 0 0 0

. . .

0 0 . . . 1 −λ 0
0 0 . . . 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
which, upon utilizing Eq. (B1), evaluates to

∆(β) = (−1)ν−1

[
1− λν−1

1− λ
+ βλν−1

]
. (B2)

Utilizing Laplace expansion on the first row of the matrix
in Eq. (33), for which the Jacobian is given by Eq. (32),
and then pulling out, respectively, d and b, we reduce the
problem to

0 = (a− λ)d ∆(1− λ/d)− c b ∆(1),

which yields the characteristic equation

0 = [(a− 1) d− b c]
1− λν

1− λ
+ d− (a+ d)λν + λν+1.

Appendix C: Bound on a

To show that |a| < 1, we treat the underdamped and
overdamped case separately: In the underdamped case
both µ and ω are positive real and it is seen that |a| < 1
because

|a| =
∣∣∣e−µT∗

∣∣∣ ∣∣∣cos(ωT ∗) +
µ

ω
sin(ωT ∗)

∣∣∣
≤
∣∣∣e−µT∗

∣∣∣ (|cos(ωT ∗)|+ (µT ∗)

∣∣∣∣ sin(ωT ∗)

ωT ∗

∣∣∣∣)
≤ e−µT∗

(1 + µT ∗)

< 1. (C1)

If Q < 1/2, such that the system is overdamped, ω is
imaginary (ω = i|ω|) and µ > |ω| holds, as seen from

Eq. (12). Furthermore, a < 0, such that |a| = −a. We
can write

|a| = e−µT∗
[
cosh(|ω|T ∗) + (µT ∗)

sinh(|ω|T ∗)

|ω|T ∗

]
= e−(µ−|ω|)T∗

[1 + (µ− |ω|)T ∗]

− (µ− |ω|) e−(µ−|ω|)T∗

2|ω|
[
e−2|ω|T∗

+ 2|ω|T ∗ − 1
]
.

Since 0 ≤ e−2|ω|T∗
+2|ω|T ∗−1 with equality for |ω| = 0,

we find

|a| ≤ e−(µ−|ω|)T∗
[1 + (µ− |ω|)T ∗] < 1. (C2)

Appendix D: No λ = 1 solution

There exists no solution λ = 1 because substitution of
λ = 1 into Eq. (34) produces the condition

0 = [(a− 1) d− b c] ν + [1− a] , (D1)

which cannot be satisfied because it has a positive right
hand side. The first term on the right hand side is pos-
itive because, after rewriting [(a − 1) d − b c] by using
Eq. (A5), one finds

1 + 2 cos(ωT ∗) e−µT∗
+ e−2µT∗ ≥ (1− e−µT∗

)2. (D2)

The second term is positive because |a| < 1 as shown in
App. C.

Appendix E: Bound on d

The purpose of this section is to show that if either
Q ≥ 1/2 and ωT ∗ < π or Q < 1/2 then

−e−2µT∗
< d+ 1. (E1)

To demonstrate this inequality we consider the expression

g = eµT
∗
(d+ 1) =

µ

ω
sin(ωT ∗)− cos(ωT ∗), (E2)

where we made use of the definition of d given by
Eq. (A4). We will show that g is bounded from below by

f = −e−µT∗
. (E3)

We treat the overdamped and underdamped regime sepa-
rately: In the overdamped regime (Q < 1/2), ω = i|ω| =
iµ
√
1− 4Q2. For convenience, we introduce x = |ω|T ∗

and y = µ/|ω| in order to rewrite Eq. (E2) as

g = y sinh(x)− cosh(x) (E4)

with x ∈ (0,∞) and y ∈ (1,∞) and f as f = −e−xy.
First note that g and f are equal at x = 0 and that both
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f and g have positive slope with respect to x with g′ > f ′

because g′ = (y − 1) sinh(x) + ye−x, f ′ = ye−xy, and

(y − 1) sinh(x) + ye−x > ye−x > ye−xy > 0 (E5)

if y > 1 and x > 0. Thus, g > f if x > 0 and y > 1.
If Q ≥ 1/2, ω is real and we introduce the variable

ϕ = ωT ∗ together with the assumption that 0 ≤ ϕ < π.
For convenience we, furthermore, introduce y = µT ∗ and
write Eq. (E2) as

g = y sinc(ϕ)− cos(ϕ) ϕ ∈ [0, π), y ∈ (0,∞). (E6)

Utilizing the inequalities e−y > (1 − y) if y ̸= 0 and
1 ≥ sinc(ϕ) > 0 if ϕ ∈ [0, π), yields the estimate

−f = e−y > (1− y) ≥ (1− y) sinc(ϕ). (E7)

The bound on d is obtained by noting that sinc(ϕ) ≥
cos(ϕ) if ϕ ∈ [0, π), such that

−f > cos(ϕ)− y sinc(ϕ) = −g. (E8)

Appendix F: Neimark-Sacker bifurcation

Here we derive Eq. (36). First note that the charac-
teristic equation, Eq. (34), can be rewritten as

0 = A
λν+1 − 1

λ− 1
+ (λν+1 − 1)−B(λν − 1) + d+ 1−B

with A = [(a− 1)d− b c] and B = [(a(d+ 1)− bc]. Sub-
stitution of λ = eiϕ, multiplication by e−iνϕ/2, and sub-
sequent separation of real and imaginary parts gives the
equation pair

0 = [f1 + cosϕ]
sin
(
ν+1
2 ϕ

)
sin
(

ϕ
2

) + f2 cos
(ν
2
ϕ
)

0 = cos

(
ϕ

2

)
sin

(
ν + 1

2
ϕ

)
+ f3 sin

(ν
2
ϕ
)
.

For notational convenience, we introduced f1 = A − 1,
f2 = d + 1 − B, and f3 = −d − 1 − B. Utilizing the
definition (A4) of d as well as the identities Eq. (A5) and
Eq. (A6) and recalling that ω and µ are defined in terms
of the parameters Ω and Q according to Eq. (12), we find
that the function fi(Ω, Q) are given by

f1 = 2 cos(ωT ∗) e−µT∗
+ e−2µT∗

(F1)

f2 = −
[
cos(ωT ∗)− µ

ω
sin(ωT ∗)

]
e−µT∗ − e−2µT∗

(F2)

f3 =
[
cos(ωT ∗)− µ

ω
sin(ωT ∗)

]
e−µT∗ − e−2µT∗

. (F3)
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