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I. INTRODUCTION

In classical electrodynamics, the fundamental physical
quantities are electric and magnetic fields, Eðr; tÞ and Bðr; tÞ.
Field lines,1 which connect up the field vectors at adjacent
points, can be useful for visualizing the structure of the
fields, but they play no role at all in the underlying theory.
As Feynman put it, “[F]ield lines …are only a crude way of
describing a field and it is very difficult to give the correct,
quantitative laws directly in terms of field lines. Also, the
ideas of the field lines do not contain the deepest principle of
electrodynamics, which is the superposition principle. Even
though we know how the field lines look for one set of
charges and what the field lines look like for another set of
charges, we don’t get any idea about what the field line pat-
terns will look like when both sets are present together. [In
terms of the fields E and B], on the other hand, superposition
is easy—we simply add the two vectors.”2

Moreover, field lines are subject to some common miscon-
ceptions. Introductory students are often told the following:

(1) Electric field lines cannot terminate in empty space; they
originate on positive charges and end on negative
charges (or they run off to infinity).

(2) Magnetic field lines cannot terminate in empty space;
they form closed loops (or they run off to infinity).

(3) The density of electric field lines is proportional to the
strength of the field.

(4) The density of magnetic field lines is proportional to the
strength of the field.

(5) Field lines are “real” physical entities: invisible “strings”
existing out there in the space around charges and
currents.

Of these, only number 3 is true in general3 (even for static
configurations). The goal of this paper is to challenge these
misapprehensions by presenting a number of simple explicit
counterexamples and by calling attention to the somewhat
scattered literature on the subject. We do not pretend to have
discovered anything fundamentally new, and nothing here
will be news to specialists (especially plasma physicists).
But we do suspect that some students (and their instructors)
will be surprised to learn that simple rules they were taught
in high school are not sustainable. We show that both electric
and magnetic field lines can terminate in mid-air, at points
where the field is zero, and we demonstrate that magnetic
field lines do not ordinarily form closed loops4 (though this
is a striking feature of many familiar examples). We identify
two interesting alternatives, which we call the “vortex”
(a field line that spirals in to a line current) and the “slinky”
(a field line that corkscrews along a line current).

This raises some surprisingly subtle questions:

• What is it about the familiar textbook configurations that
leads to closed magnetic field lines? How can we tell in
advance (from the structure of the source current) whether
it will generate closed field lines?

• Often, those closed field lines are in fact planar; what is
the connection (if any) between field lines that lie in a
plane and field lines that form closed loops?

• What is the role of special symmetries of the current
configuration?

• Can we classify the topologies of possible non-closed field
lines?

We cannot provide simple and definitive answers, but this
is a start.

In Sec. II, we consider more carefully the notion of a
“field line.” What exactly does the term mean, and have we
perhaps been misled by Faraday and others, who entertained
a very concrete interpretation that is difficult to justify in
Maxwell’s electrodynamics?5 In Sec. III, we explore some
surprising examples of magnetic field lines that do not form
closed loops. In Sec. IV, we consider some special symme-
tries of the source currents and their implications for field
line configurations. In Sec. V, we return to the question of
why so many familiar currents lead to closed field lines.
Appendix A derives (from the Biot–Savart law) some results
quoted in Sec. IV. Appendix B develops an intriguing rela-
tion between field lines in special two-dimensional problems
and contour plots (which are typically closed loops).
Appendix C discusses the curvature and torsion of field lines
and some implications of the Frenet–Serret formulas in this
context. In the supplementary material, we offer some useful
tools to aid interested readers in exploring configurations of
their own devising.

II. FIELD LINES

What, precisely, is a field line—how, for example, would
you instruct a computer to plot one for a specified field FðrÞ?
The basic idea is very simple: to get from one point on a field
line, rðuÞ, to the next, rðuþ duÞ, you take a short step in the
direction of the field:

rðuþ duÞ ¼ rðuÞ þ FðrðuÞÞ
jFðrðuÞÞj

k du: (1)

Here, u is any smooth parameter that increases monotoni-
cally along the curve, and kðuÞ du is the distance from rðuÞ
to rðuþ duÞ. In the infinitesimal limit,

583 Am. J. Phys. 92 (8), August 2024 http://aapt.org/ajp # 2024 Published under an exclusive license by AAPT 583

 30 July 2024 01:18:43

https://doi.org/10.1119/5.0186335
https://doi.org/10.60893/figshare.ajp.c.7231276
http://crossmark.crossref.org/dialog/?doi=10.1119/5.0186335&domain=pdf&date_stamp=2024-07-13


dr

du
¼ k

FðrÞ
jFðrÞj

: (2)

You’re free to pick k > 0 however you want (it can even be
a function of r) since k just determines how far along the
field line you progress as you increase u. A natural choice is
k¼ 1; in that case, u is the arc length, ‘:

dr

d‘
¼ FðrÞ
jFðrÞj

: (3)

Another convenient possibility—the one we shall use in this
paper—is k ¼ jFðrÞj:

dr

du
¼ FðrÞ: (4)

In any case, what we have is an ordinary first-order differen-
tial equation for rðuÞ, and (fourth order) Runge–Kutta is the
method of choice for numerical solutions (see the supple-
mentary material).

What happens when a field line approaches a point where
the field itself vanishes?6 If the field on the “far side” has the
opposite direction, then algorithm (1) will drive the field line
back and forth across the null point, effectively terminating it
there.7 For example, imagine two identical positive charges
on the x axis, at x ¼ þa and x ¼ %a. An electric field line
departs from the one atþa, heading to the left (toward the ori-
gin); another departs from the charge at –a, heading to the
right (also toward the origin). What happens when the two
incompatible field lines collide at the center? The student is
probably told “just don’t draw that field line” (after all, you
can only draw a representative sampling, and at the center,
where the field is zero, there shouldn’t be a field line, since
the density of field lines is proportional to the strength of the
field). Wouldn’t it be better to admit that those two perfectly
legitimate field lines simply terminate at x¼ 0, and amend the
rule: “electric field lines can terminate either at point charges
(or at infinity), or else at places where the field vanishes”?

The same goes for magnetic fields: Imagine two square
wire loops, centered on the z axis, one at z¼ b and one at
z ¼ %b, carrying opposite currents. The field along the z axis
points in the þz direction for positive z, and in the –z direc-
tion for negative z (Fig. 1). One field line starts at the origin

and heads up the positive z axis, while another starts there
and heads down the negative z axis. Meanwhile, if (as we
just assumed) that center point is a “source” for field lines
along the z axis, it is a “sink” for field lines coming in along
the x and y axes: they terminate in mid-air at the origin,
where the field is zero.8

By construction, a field line always “grows” in the direc-
tion of the field, and if it hits a point where F ¼ 0 (all three
components), it stops. Each field line carries an arrow—its
direction—and it cannot switch its direction in mid-stream.
Except for “singular” points, where jFj goes to infinity (as,
for instance, on a current-carrying wire) or F ¼ 0, there is a
(unique) field line through every point in space.

III. EXAMPLES

From now on, we will restrict our attention to (static) mag-
netic field lines, which are much more interesting (and problem-
atic) than electric ones. Every introductory textbook displays the
familiar magnetic field lines for long straight wires, circular cur-
rent loops, solenoids, toroidal coils, infinite current sheets, and
magnetic dipoles. In this section, we will explore some less
familiar configurations to get a feel for the range of possibilities.

A. The Slinky

For a circular current, the field lines form plane closed
loops around the wire (Fig. 2).9 But suppose we now intro-
duce an additional current, along the axis (z) of the loop.10

Its field lines circle the z axis and impart an azimuthal com-
ponent to the total, which now forms a kind of helix,

Fig. 1. Field lines that terminate in mid-air; currents in black, field lines in
red (color online).

Fig. 2. Field line for a circular current loop.

Fig. 3. Magnetic field lines for an infinite wire passing through a circular
current loop form a “slinky.”
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wrapping around the wire loop like a slinky (Fig. 3). Except
for certain special ratios of the two currents, the field lines
will not close on themselves but wind around again and
again to fill out a toroidal surface.

You can do the same thing for a square current loop
(Fig. 4) or even by combining a uniform longitudinal field
(say, from an infinite solenoid) and a coaxial line current
(Fig. 5)—though in this case, the field line does not fill in the
whole surface.

Of course, these configurations are artificial, in the sense that
they include wires extending to infinity. But you can achieve
essentially the same effect by replacing the infinite wire with a
second circular loop interlocking the first (Fig. 6).11

B. The vortex

Imagine now two parallel square current loops, one directly
above the other, carrying identical currents. If you don’t get
too close to either wire, the field lines form closed loops (Fig.
7). But suppose you start out quite close to (say) the lower
square, in the plane bisecting one of its sides? By symmetry,
the field line will remain in that plane. It “orbits” the wire in
an expanding spiral, until at some point it is captured by the

upper square, and proceeds to spiral inward (Fig. 8). What if
we track the line back in the other direction (by reversing the
sign of the current)? It spirals in, closer and closer to the lower
wire, filling in the “hole” in the figure. In both directions, the
field line never really terminates, but neither does it form a
closed loop; it “ends” in a death spiral around the current;
we’ll call it a “vortex.” In this case, the field line starts as a
vortex on one wire and ends as a vortex on the other wire.

It is also possible for a field line that begins as a vortex to
fly off to infinity. In Fig. 9, we give the upper square twice the
current and again start off in the plane bisecting one side (so
the trajectory is confined to that plane). In Fig. 10, we do the
same, but for the vertical plane including the back corners—
again, symmetry dictates that the whole field line remains in
that plane. (Here, the field line flies in from infinity.)

What if we start from a point that is neither in the bisect-
ing plane nor in the corner plane? Then, symmetry no longer
restricts the field line to a plane, and more complicated tra-
jectories occur. In the “two spools” diagram (Fig. 11), the
field line slinkies up the lower ring toward the corner, but
instead of forming a vortex it opens out and is captured by
the upper ring, where it slinkies down and transfers back to
the first ring. (For other initial conditions, it escapes to infin-
ity.) The two symmetry planes constitute “brick walls” the
field line cannot penetrate; between them, it executes
“frustrated” vortices and truncated slinkies.

Fig. 5. Slinky on an infinite straight current. (Not shown: the source current
for the uniform longitudinal field.)

Fig. 6. Interlocking circular currents.Fig. 4. Slinky on a square current loop.

Fig. 7. Typical field line for identical square currents.

585 Am. J. Phys., Vol. 92, No. 8, August 2024 Franklin, Griffiths, and Schroeter 585

 30 July 2024 01:18:43



How is a vortex possible? Close to a wire, we certainly
expect approximately circular field lines. But here they are
evidently perturbed by a field that aims inward, toward the
current, for points in the plane of the “circle” (and since
$ & B ¼ 0, this means that along the direction of the wire the
perturbing field must point away from the center).

Such a field occurs (for example) inside a spherical shell
of radius R, centered at the origin and carrying a surface
current12

Kðh;/Þ ¼ K0 sinð2hÞ /̂; (5)

where the field is

Bðs;/; zÞ ¼ 2l0K0

5R
ð%s ŝ þ 2z ẑÞ (6)

(in cylindrical coordinates, with s the distance from the z
axis). As a simple model for a vortex, then, we imagine a
steady current I running down the z axis, passing through
this spherical shell. In the z¼ 0 plane, the perturbing field of
the sphere aims inward, forcing the otherwise circular field
line to spiral toward the axis (Fig. 12), while, for points
above (or below) the plane, the z component produces a
slinky riding up (or down) the z axis (Fig. 13).

We can make this quantitative. Equation (4) yields the
field line, in parametric form:

sðuÞ ¼ s0e%au; /ðuÞ ¼ b
2as2

0

e2au% 1ð Þ; zðuÞ ¼ z0e2au;

(7)

where

a ' 2l0K0

5R
; b ' l0I

2p
; (8)

s0 is the initial distance from the axis, z0 is the initial distance
above the x y plane, and we set /ð0Þ ¼ 0. Eliminating u in favor
of / as the independent variable, the field line takes the form

sð/Þ ¼ s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c/
p ; zð/Þ ¼ z0ð1þ c/Þ; (9)

with c ' ð8pK0s2
0Þ=ðIRÞ.

C. Chaotic field lines

Over the years, several authors13 have explored magnetic
fields that are “chaotic,” in the sense that field lines starting
out very close together diverge exponentially as they

Fig. 8. Paired vortices for equal square currents.

Fig. 9. Vortex to infinity for bisecting plane.

Fig. 10. Vortex to infinity for corner plane.

Fig. 11. Frustrated vortex and truncated slinky (same field as Figs. 9 and 10,
but starting between the planes).
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progress.14 Let us begin with two infinite perpendicular
straight line currents, say one along the z axis and one (with
the same current) along the y axis. Near to an axis and far
from the origin, the field lines are, of course, approximately
circular. Closer to the origin, a typical field line is a closed
(but non-planar) loop (Fig. 14).

But suppose we move the second wire so that it is parallel
to the y axis, but at x¼ b (and z¼ 0). This is one of the very
first problems assigned to an early electronic computer.15

Fig. 15 shows a typical field line.16

IV. SYMMETRY

The closure and planarity of field lines are closely associ-
ated with symmetries of the currents that produce them. In
this section, we explore some examples.17

A. Translational symmetry

By translational symmetry, we mean that the current distri-
bution is independent of one of the Cartesian coordinates—
say, z. We consider two cases: “longitudinal” (when the cur-
rents themselves are in the z direction) and “transverse”
(when the currents are perpendicular to the z direction). What
are the resulting symmetries of B?

1. Longitudinal currents

Suppose

Jðx; y; zÞ ¼ Jzðx; yÞ ẑ: (10)

Then by the Biot–Savart law,

BðrÞ ¼ l0

4p

ð
Jðr0Þ ( r

r3
d3r0 (11)

(where r ' r% r0), the magnetic field takes the form18

Bðx; y; zÞ ¼ Bxðx; yÞ x̂ þ Byðx; yÞ ŷ: (12)

The field and, hence, also the field lines lie in planes of con-
stant z—the same in every such plane. (Example: an infinite
straight wire.)

2. Transverse currents

Suppose

Jðx; y; zÞ ¼ Jxðx; yÞ x̂ þ Jyðx; yÞ ŷ: (13)

Fig. 12. Model vortex. (Not shown: spherical surface current.)

Fig. 13. A field line above the x y plane. (Not shown: spherical surface
current.)

Fig. 14. Non-planar closed field line for intersecting perpendicular currents.

Fig. 15. “Chaotic” field line for non-intersecting perpendicular currents.
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Then

Bðx; y; zÞ ¼ Bzðx; yÞ ẑ: (14)

The field lines are infinite, straight, and parallel to the z axis.
This generalizes the familiar rule19 for infinite solenoids of
arbitrary cross section: the field is parallel to the axis (and
equal to l0K, where K is the surface current density, for
points inside).

Notice that Eq. (10) is to Eq. (12) as Eq. (14) is to Eq.
(13), illustrating a kind of duality: B is to l0J as l0J is to
%ðr2ÞB. (This follows from $ & B ¼ 0; $ & J ¼ 0, and
$( B ¼ l0J) $( ðl0JÞ ¼ $( ð$( BÞ ¼ %r2B.)

B. Azimuthal symmetry

By azimuthal symmetry, we mean that the current is inde-
pendent of /. Again, we consider two cases:

1. Toroidal currents

Suppose

Jðs;/; zÞ ¼ Jsðs; zÞ ŝ þ Jzðs; zÞ ẑ; (15)

in cylindrical coordinates. Then,

Bðs;/; zÞ ¼ B/ðs; zÞ /̂; (16)

the field points in the azimuthal direction,20 and the field
lines are closed (planar) circles. This includes as a special
case all azimuthally symmetric longitudinal currents:

Jðs;/; zÞ ¼ JzðsÞ ẑ; Bðs;/; zÞ ¼ B/ðsÞ /̂: (17)

2. Azimuthal currents

Suppose

Jðs;/; zÞ ¼ J/ðs; zÞ /̂: (18)

Then

Bðs;/; zÞ ¼ Bsðs; zÞ ŝ þ Bzðs; zÞ ẑ: (19)

The field lines lie in planes of constant /, but it is not clear
whether they must be closed. We’ll investigate this further in
Appendix B.

Again, Eq. (15) is to Eq. (16) as Eq. (19) is to Eq. (18),
illustrating the duality between J and B.

C. Mirror symmetry

Suppose the source current has no z component,

Jðx; y; zÞ ¼ Jxðx; y; zÞ x̂ þ Jyðx; y; zÞ ŷ; (20)

and is symmetric with respect to the x y plane:

Jxðx; y;%zÞ ¼ Jxðx; y; zÞ;
Jyðx; y;%zÞ ¼ Jyðx; y; zÞ:

(21)

Then the magnetic field satisfies

Bxðx; y;%zÞ ¼ %Bxðx; y; zÞ;
Byðx; y;%zÞ ¼ %Byðx; y; zÞ;
Bzðx; y;%zÞ ¼ Bzðx; y; zÞ:

(22)

As always, this follows from the Biot–Savart law (see Appendix
A). We’ll call the combination “mirror” symmetry. Notice that
the fields at z¼ 0 point in the z direction (Eq. (22)), and hence
any field line that crosses the x y plane does so perpendicularly.

Planar currents

Suppose the current lies entirely in a plane (make it the x y
plane). This is a special case of mirror symmetry (Eqs. (20)
and (21) hold trivially), so the fields satisfy Eq. (22).
Question: What field line configurations are possible?

Consider first a field line that never crosses the x y plane.
It cannot form a closed loop (with a matching loop at the
image position), because, by Ampère’s law, the line integral
of B around that loop would be

þ
B & dr ¼

ð
B & dr

du
du ¼

ð
B2 du ¼ l0Ienc ¼ 0: (23)

So B would have to be zero everywhere along the field
line—which is no field line at all. Nor could it form a slinky
or a vortex—they wrap around currents, so it would have to
cross the x y plane. But it could go to infinity—for instance,
the field of an infinite sheet of current in, say, the x direc-
tion. Could it terminate in mid-air? Remember, this can
happen at a point where B ¼ 0. Consider two concentric
circular loops carrying equal but opposite currents, the
outer one with twice the radius (a) of the inner one. The
field on the axis is

BðzÞ ¼ l0Ia2

2

4

ð4a2 þ z2Þ3=2
% 1

ða2 þ z2Þ3=2

" #
ẑ; (24)

and it goes through zero at z0 ) 0:9869 a. If I is positive, the
field points in the negative z direction for %z0 < z < z0 and
in the positive z direction otherwise; there is a field line that
starts at ð0; 0; z0Þ and runs up the z axis, another that starts
there and runs down to %z0 (but that one crosses the x y
plane, of course), and a third that starts at %1 and runs up
the ð%Þz axis to %z0. (There are also “horizontal” field lines
that converge on z0 and diverge from %z0.) So the answer is
“yes”: such field lines can terminate in mid-air.

What about field lines that do cross the x y plane? If they
cross just once, they can either terminate in mid-air (we just
saw an example), or they can run off to infinity (for
instance, on the axis of a circular current loop). If they cross
twice, then necessarily they form closed loops—one lobe
above the plane joining its mirror image below the plane.
They cannot cross multiple times (forming, say, a slinky or
a vortex), for such configurations by their nature violate
mirror symmetry.

Conclusion: The field lines generated by planar currents
form closed loops, run off to infinity, or terminate in mid-
air.21

V. CONCLUSION

Magnetic field lines can form finite closed loops, they can
escape to infinity, they can terminate in mid-air at points

588 Am. J. Phys., Vol. 92, No. 8, August 2024 Franklin, Griffiths, and Schroeter 588

 30 July 2024 01:18:43



where the field is zero, they can end in death spirals at a line
current, or they can wander around forever as a slinky that
never closes; they can even form a chaotic rat’s nest. Notice
that every figure in this paper, save the first and the last,
shows a single field line! (So much for the notion that the
density of field lines reflects the strength of the field.) What,
then, is the answer to our original question: Why do the
familiar steady current configurations produce closed mag-
netic field lines? There doesn’t seem to be a simple generic
answer; it all depends on the symmetry of the current.

• Infinite straight current: a steady current I runs along the z
axis. This is an example of a longitudinal current with azi-
muthal symmetry (Eq. (17)); the field is azimuthal, and
the field lines are (coaxial) closed circles.

• Toroidal coil: a surface current Kðs; zÞ ¼ Ksðs; zÞ ŝ
þKzðs; zÞ ẑ flows over a toroid about the z axis (perhaps
with circular or rectangular cross section, but it doesn’t mat-
ter, as long as it is uniform all the way around). This is an
example of a toroidal current with azimuthal symmetry (Eq.
(15)), and the field lines are (coaxial) circles. (There are no
field lines exterior to the toroid, where the field is zero.)

• Circular current loop: a current I flows in a circle that lies
in the x y plane, centered at the origin. This is an example
of an azimuthal current with azimuthal symmetry (Eq.
(18)), and the field lines lie in planes of constant /
(Eq. (19)). The current is planar, so the field lines are
closed (except along the axis, where they run off to infin-
ity). (The same goes for an ideal (point) magnetic dipole,
which is the limiting case of a circular current loop.)

• Spinning figures of revolution: other familiar examples
include uniformly charged spinning spheres and finite cir-
cular solenoids (or objects with equivalent currents: uni-
formly magnetized balls and cylindrical bar magnets).
These are again examples of azimuthal currents with azi-
muthal symmetry (Eq. (18)), so the field lines lie in planes
at constant / ([Eq. (19)). We could regard them as a stack
of coaxial circular current loops of varying radius. The
simplest example would be two identical rings at z ¼ 6b.
Typical field lines circle one loop (as in Fig. 2), or both
(as in Fig. 7), but could we get vortices (as in Fig. 8)? No
we cannot: a vortex would require a field component
pointing inward (toward the wire), in the constant / plane,
and therefore pointing away from the center of the spiral
(i.e., in the 6/̂ directions) for points perpendicular to that
plane. But a field in the /̂ direction is excluded by the azi-
muthal symmetry. Evidently, these field lines, too, must
form closed loops (or, along the axis, run off to infinity).22

Yes: simple systems (straight line currents, circular loops,
tightly wound toroidal coils, bar magnets) produce closed
magnetic field lines. But the full story is so much richer!

SUPPLEMENTARY MATERIAL

Please click on this link to access the supplementary mate-
rial, which includes details on the Mathematica code used to
draw the figures in this paper. Print readers can see the
supplementary material at https://doi.org/10.60893/figshare.
ajp.c.7231276
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APPENDIX A: PROOF OF EQ. (22)

If the current has mirror symmetry (Eqs. (20) and (21)), then

Jðr0Þ ( r ¼
x̂ ŷ ẑ

Jx Jy 0

rx ry rz

$$$$$$$

$$$$$$$

¼ ðJyrzÞ x̂ % ðJxrzÞ ŷ þ ðJxry % JyrxÞ ẑ; (A1)

so (letting z00 ¼ %z0), the Biot–Savart law (Eq. (11)) says

Bxðx;y;zÞ

¼ l0

4p

ð
Jyðx0;y0; z0Þðz% z0Þ

ðx% x0Þ2þðy% y0Þ2þðz% z0Þ2
h i3=2

dx0 dy0 dz0

¼ l0

4p

ð
Jyðx0;y0;%z00Þðzþ z00Þ

ðx% x0Þ2þðy% y0Þ2þðzþ z00Þ2
h i3=2

dx0dy0dz00

¼ l0

4p

ð
Jyðx0;y0;z00Þðzþ z00Þ

ðx% x0Þ2þðy% y0Þ2þðzþ z00Þ2
h i3=2

dx0 dy0 dz00

(A2)

(we used Eq. (21) in the last line). Thus,

Bxðx;y;%zÞ

¼ l0

4p

ð
Jyðx0;y0;z00Þð%zþ z00Þ

ðx%x0Þ2þðy%y0Þ2þð%zþ z00Þ2
h i3=2

dx0 dy0 dz00

¼%Bxðx;y;zÞ; (A3)

and the same goes for By. That establishes the first two equa-
tions in Eq. (22). Meanwhile,

Bzðx; y; zÞ

¼ l0

4p

ð
Jxðx0; y0; z0Þðy% y0Þ % Jyðx0; y0; z0Þðx% x0Þ

ðx% x0Þ2 þ ðy% y0Þ2 þ ðz% z0Þ2
h i3=2

( dx0 dy0 dz0

¼ l0

4p

ð
Jxðx0; y0;%z00Þðy% y0Þ % Jyðx0; y0;%z00Þðx% x0Þ

ðx% x0Þ2 þ ðy% y0Þ2 þ ðzþ z00Þ2
h i3=2

( dx0dy0dz00

¼ l0

4p

ð
Jxðx0; y0; z00Þðy% y0Þ % Jyðx0; y0; z00Þðx% x0Þ

ðx% x0Þ2 þ ðy% y0Þ2 þ ðzþ z00Þ2
h i3=2

( dx0 dy0 dz00

¼ Bzðx; y;%zÞ; (A4)

which confirms the third equation in Eq. (22).
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APPENDIX B: FIELD LINES AND CONTOUR PLOTS

In this appendix, we explore further the case of azimuthal
currents with azimuthal symmetry (Eq. (18)):

Jðs;/; zÞ ¼ J/ðs; zÞ /̂: (B1)

The magnetic field takes the form (Eq. (19))

Bðs;/; zÞ ¼ Bsðs; zÞ ŝ þ Bzðs; zÞ ẑ; (B2)

and its components satisfy

$ & B ¼ 1

s

@

@s
ðsBsÞ þ

@Bz

@z
¼ 0: (B3)

The field lines lie in planes at constant /, and numerical
plots are strikingly reminiscent of contour maps. Does
there exist a scalar function U(s, z) such that the con-
tours of U correspond to the magnetic field lines? That
would require that B be perpendicular to the gradient
of U:

B & $U ¼ Bs
@U

@s
þ Bz

@U

@z
¼ 0: (B4)

We can satisfy Eq. (B4), and automatically also Eq. (B3), if
we choose

@U

@s
¼ sBz;

@U

@z
¼ %sBs: (B5)

For the current in Eq. (B1), the vector potential is

AðrÞ ¼ l0

4p

ð
Jðr0Þ

r
d3r0 ¼ l0

4p

ð
J/ðs0; z0Þ /̂

0

jr% r0j
d3r0: (B6)

We might as well choose axes such that r lies in the x z
plane, at y¼ 0. An element of current at P0 is matched by an
element at P00 with the same s0 and z0, but opposite /0 (which
we can run from %p to þp, instead of 0 to 2p); P0 and P00

share the same r ¼ jr% r0j, but the currents point in the
directions /̂

0
and /̂

00
, and when the two vectors are added,

the resultant points in the y direction. Conclusion: The vec-
tor potential, in the x z plane, points purely in the y direc-
tion—which is to say, in general, that it points in the /̂
direction:

AðrÞ ¼ l0

4p
/̂
ð

J/ðs0; z0Þ
jr% r0j

s0 ds0 d/0 dz0: (B7)

Now,

r¼ðscos/% s0 cos/0Þx̂þðssin/% s0 sin/0Þŷþðz% z0Þẑ;
(B8)

so

r2¼ s2þðs0Þ2þðz%z0Þ2%2ss0ðcos/cos/0þsin/sin/0Þ;
(B9)

and the /0 integral becomes

I/ ¼
ð2p

0

d/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 % 2ss0 cosð/% /0Þ

p

¼
ð2p

0

d/00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 % 2ss0 cosð/00Þ

p ; (B10)

where q2 ' s2 þ ðs0Þ2 þ ðz% z0Þ2. We could actually do this
integral, but we don’t need it … the point is that the result is
independent of /, and hence

AðrÞ ¼ A/ðs; zÞ /̂: (B11)

Of course, $( A ¼ B, or

% @A/

@z
¼ Bs;

1

s

@

@s
ðsA/Þ ¼ Bz;

so the contour function U [Eq. (B5)] is precisely

Uðs; zÞ ¼ s A/ðs; zÞ: (B12)

The field lines are contours of the function U(s, z), and they
are typically closed loops (for this symmetry) just as contour
lines are typically closed loops. Not always, however: imagine
a ridge at constant altitude—perhaps even forming a spiral—
the contour along the top does not form a closed loop. And
this correspondence works only for two-dimensional configu-
rations; a slinky is nobody’s contour line.

Example: consider a charged spherical shell (radius R,
charge density r) spinning around the z axis with angular
velocity x (Ref. 19, example 5.11). The vector potential is

A ¼
ks /̂ ðr * RÞ;

k
R3s

r3
/̂ ðr + RÞ;

8
><

>:
(B13)

where k ' ðl0xrRÞ=3. So

Uðs; zÞ ¼
ks2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2
p

* R
% &

;

kR3s2

ðs2 þ z2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2
p

+ R
% &

:

8
>><

>>:
(B14)

The contour plot is shown in Fig. 16.

Fig. 16. Contour plot for Eq. (B14).

590 Am. J. Phys., Vol. 92, No. 8, August 2024 Franklin, Griffiths, and Schroeter 590

 30 July 2024 01:18:43



APPENDIX C: CURVATURE AND TORSION

If we use arc length for the parameter u, then

t̂ ' dr

du
(C1)

is a unit tangent vector along the field line. Its derivative
defines the curvature j (which measures the departure from
straightness) and the unit vector n̂:23

dt̂

du
¼ j n̂; (C2)

n̂ is perpendicular to t̂, and their cross-product defines a third
unit vector,

b̂ ' t̂ ( n̂: (C3)
At any given point along the curve, t̂; n̂, and b̂ form a (right-
handed) triad of orthogonal unit vectors. Their derivatives
satisfy the Frenet–Serret formulas:24

dt̂

du
¼ j n̂;

dn̂

du
¼ s b̂ % j t̂;

db̂

du
¼ %s n̂: (C4)

Here, s is the torsion; it measures the departure from flatness.
A planar curve (with nonzero j) has s¼ 0 everywhere.

In the case of magnetic field lines, t̂ is given by Eq. (3):

t̂ðuÞ ¼ dr

du
¼ B̂ rðuÞð Þ; (C5)

where B̂ is a unit vector in the direction of the field.
Differentiating the ith component with respect to u,

dt̂

du

' (

i
¼ @B̂i

@rj

drj

du
¼ $jB̂i

) *
B̂j ¼ ðB̂ & $Þ B̂i (C6)

(summation over j implied), so

j n̂ ¼ ðB̂ & $ÞB̂ ¼ %B̂ ( ð$( B̂Þ: (C7)

(The final step follows from the product rule for $ðA & BÞ.)
The other derivatives in Eq. (C4) can be handled in the same
way.

Example: Take the case of an infinite wire carrying a
steady current I. The field, in cylindrical coordinates
ðs;/; zÞ, is

B ¼ l0I

2ps
/̂ ) t̂ ¼ B̂ ¼ /̂: (C8)

From Eq. (C7),

j n̂ ¼ %/̂ ( ð$( /̂Þ ¼ %/̂ ( 1

s
ẑ

' (
¼ % 1

s
ŝ; (C9)

so

j ¼ 1

s
; n̂ ¼ %ŝ: (C10)

This makes sense: the field lines are circles of radius s (cur-
vature 1=s), and n̂ is a unit vector pointing toward the center
of the circle (on the z axis). Meanwhile,

b̂ ¼ t̂ ( n̂ ¼ /̂ ( ð%ŝÞ ¼ ẑ; (C11)

and ðt̂; n̂; b̂Þ ¼ ð/̂;%ŝ; ẑÞ constitute a right-handed triplet of
orthogonal unit vectors, as promised. Finally,

dn̂

du
¼ % 1

s
/̂ ¼ %j t̂; (C12)

and hence (from Eq. (C4)), the torsion s¼ 0. This too makes
sense: the field lines are planar (circles). Evidently,
db̂=du ¼ ð̂t & $Þb̂ ¼ 0, and this is indeed the case.

Suppose we now introduce a uniform magnetic field in the
z direction, so the field lines are helices (Fig. 5):

B ¼ l0I

2ps
/̂ þ B0 ẑ ¼ l0I

2ps
ð/̂ þ as ẑÞ (C13)

(where a ' 2pB0=l0I). Then,

t̂ ¼ B̂ ¼ /̂ þ as ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2s2
p : (C14)

From Eqs. (C7) and (C3), we get

j ¼ 1

sð1þ a2s2Þ
; n̂ ¼ %ŝ; and b̂ ¼ %as /̂ þ ẑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2s2
p ;

(C15)

while Eq. (C4) yields the torsion

s ¼ a
1þ a2s2

: (C16)
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