Preface

The Python-Based Laboratory: A Hands-On Guide for Scientists and Engineers provides a
learn-by-doing approach to acquiring the Python programming skills needed to implement
computer-controlled experimental work. This book is not a manual-like presentation of
Python. Rather, The Python-Based Laboratory leads its readers to mastery of the popular,
open-source Python computer language in its role as a powerful laboratory tool by carry-
ing out interesting and relevant projects that explore the acquisition, production, analysis,
and presentation of digitized waveforms. Readers, who are assumed to have no prior com-
puter programming or Python background, begin writing meaningful programs in the first few
pages.

The Python-Based Laboratory can be used as a textbook for science and engineering instruc-
tional laboratory students who are being taught up-to-date Python-based experimental
skills. The book also works well as a self-study guide for professional laboratory researchers,
industrial engineers, hobbyists, and electronics enthusiasts seeking to automate tasks using
Python. Topics covered include the control of data-acquisition devices (including multifunc-
tion data-acquisition hardware and IEEE 488.2-interfaced stand-alone instruments), data file
storage and presentation, digitized data concepts (such as resolution, sampling frequency,
and aliasing), and data analysis techniques (curve fitting and fast Fourier transform). As
readers work their way through the book, they build several computer-based instruments,
including a DC voltmeter, digital oscilloscope, DC voltage source, waveform generator, blink-
ing LED array, digital thermometer, spectrum analyzer, and frequency meter. Each chapter
concludes with a Do It Yourself project and a Use It! example as well as a healthy selection of
homework-style problems, allowing readers to test their understanding and further develop
their Python-based experimentation skills.

Python has become a very popular programming choice for laboratory and industrial
automation in recent years, often replacing the use of the industry-standard languages Lab-
VIEW (product of NI, formerly, National Instruments) and MATLAB (product of MathWorks).
Reasons for Python’s growth in this area include the following:

« Python is free and open source, in contrast to the commercial products LabVIEW and
MATLAB, making it an attractive option in academic, research, and industrial laboratories.

« Python is widely adopted in education. Because it is relatively easy to learn and transfers
well to other domains such as scientific modeling, web development, and data science, it is
not unusual for today’s students to be taught and then use Python in one or more of their
courses.

« Python has a large and active user community, which has developed an abundance of
software libraries to carry out standard computing tasks needed in laboratory applications.

« Python software drivers are increasingly being provided by equipment manufacturers for
their instruments.

The Python-Based Laboratory takes advantage of Python add-ons (called packages or libraries).
Some of these Python add-ons facilitate graphical user interfaces (GUIs) and data presen-
tation, one of the strengths of LabVIEW programming, while other Python add-ons enable



PREFACE

array-based mathematical calculations, a powerful feature of MATLAB. By utilizing these
add-ons in The Python-Based Laboratory, readers will be able to write Python programs that
incorporate the favorable features of both LabVIEW and MATLAB programming.

To serve the largest possible audience, The Python-Based Laboratory employs only free and
open-source software, namely, Python itself, the IDLE Integrated Development Environment
(for program development and execution), the Matplotlib library (for plotting), the Tkinter
package (for creating GUIs), the NumPy and SciPy packages (for mathematical functions and
array-based mathematical operations), and the PyVISA and NI-VISA packages (for IEEE 488.2
control of stand-alone instruments). Likewise, only data-acquisition (DAQ) devices with free
Python driver software are used, specifically, NI DAQ devices with the NI-DAQmx driver and
nidagmx Python package and Measurement Computing Corporation (MCC) DAQ devices with
the mcculw package.

The progression of topics in The Python-Based Laboratory is as follows:

Chapter 1: Python Program Development. This chapter focuses on writing a simple pro-
gram to test the parity (i.e., evenness or oddness) of an integer. Central features of
Python are presented, including its programming environment (terminal session and
program editor), data types, conditional branching, exception (error) handling, and pro-
gram documentation. In addition, Python’s support of object-oriented programming is
introduced.

Chapter 2: Graphical User Interface Using Tkinter. Readers use Tkinter, the graphical user
interface toolkit included as part of the Python Standard Library, to equip their integer-
parity-testing program with a GUI. In the process of creating this program, Python’s
support of both object-oriented programming (via classes) and functional program-
ming (via functions) is discussed and implemented. Readers carry out the procedure for
creating their own custom-made function.

Chapter 3: Counted Looping and Waveform Plots. The properties of a digitized waveform are
studied as readers write a sine-wave plotting program. Plotting of the digitized sine-wave
data is facilitated by Python’s Matplotlib library, while the digitized data are generated
by three counted-looping methods—for loop, list comprehension, and vectorization. The
latter method is realized through the array-based mathematics of the NumPy library.
Python’s iterable data structures called list and string are discussed, along with the
various ways prewritten software can be imported into a Python program. Finally, the
procedure for placing a Matplotlib plot on a GUI is implemented.

Chapter 4: Conditional Looping and Real-Time Plots. Readers learn to use Python’s condi-
tional looping structure— the while Loop—to create a real-time plot of a sine wave. The
advantage of using Matplotlib’s animation module, along with its blitting feature, for
such plots is explored and the method for placing an animation on a GUI is executed.

Indexing and slicing of iterable data structures is explained and the tuple data structure
is defined.

Chapter 5: GUI-Equipped Waveform Simulator. Readers write a digitized waveform simula-
tion program with advanced GUI features, including numeric input controls, a pull-down
menu, and an embedded waveform plot. The completed program creates waveforms with
sine, cosine, DC level, square, sawtooth, triangle, and user-defined shapes. In writing this
program, three Python “utility” modules are created to carry out the following tasks:
creation of waveform data with a desired shape, creation of a graphical user interface
with interactive controls, and creation of a GUI-embedded plot to display waveform data.
These three modules are used in programs created throughout the remainder of the book.

vii



viii PREFACE

Chapter 6: Introduction to Data-Acquisition Device Features. This chapter assumes that read-
ers have access to a multifunction DAQ device from either NI or MCC. Both NI and
MCC are manufacturers of popular, high-quality DAQ devices, where MCC devices are
the lower priced option with (satisfactorily) scaled-down specifications. Using the inter-
active program appropriate for their device (MAX for NI, DAQami for MCC), readers
familiarize themselves with the capabilities of a multifunction DAQ device, including
analog-to-digital conversion, digital-to-analog conversion, digital input/output opera-
tions, and digital pulse counting. In the course of this work, explanations are given of
the following important digitized data concepts: analog input modes, range, resolution,
sampling frequency, aliasing, digital input/output levels, and digital triggering. The NI
USB-6002 and MCC USB-202 DAQ devices are highlighted, but the programs developed
apply to most other NI and MCC multifunction DAQ devices.

Chapter 7: Data Acquisition Using NI DAQ Device. After their Chapter 6 orientation to the NI
DAQ device’s capabilities via MAX, readers write Python programs that execute analog-
to-digital, digital-to-analog, and digital input/output tasks on the NI DAQ device as they
construct several computer-based instruments, including a DC voltmeter, digital oscil-
loscope, DC voltage source, waveform generator, and blinking LED array. The necessity
for placing GUI and DAQ operations on separate execution threads is explored as well as
the need for triggering in an oscilloscope application.

Chapter 8: Data Acquisition Using MCC DAQ Device. After their Chapter 6 orientation to
the MCC DAQ device’s capabilities via DAQami, readers write Python programs that exe-
cute analog-to-digital, digital-to-analog, and digital input/output tasks on the MCC DAQ
device as they construct several computer-based instruments, including a DC voltmeter,
digital oscilloscope, DC voltage source, waveform generator (for upgraded MCC models),
and blinking LED array. The necessity for placing GUI and DAQ operations on sepa-
rate execution threads is explored as well as the need for triggering in an oscilloscope
application.

Chapter 9: Data Files and Character Strings. Readers learn how to use NumPy functions
to store data in, and read data from, one- and two-dimensional spreadsheet-formatted
computer files. Numeric formatting, escape sequences, and the Unicode character cod-
ing scheme are covered. The chapter concludes by giving the NumPy-based method for
writing and reading binary-formatted files.

Chapter 10: Data Analysis: Curve Fitting. A thermistor is a semiconducting device com-
monly used as a temperature sensor. A physical model for a thermistor’s temperature-
dependent resistance is presented and then readers write GUI-equipped Python pro-
grams that fit a thermistor’s temperature versus resistance calibration data to various
functional forms consistent with the physical model. First, the NumPy polynomial curve-
fitting function is used to fit the data to a third-order polynomial. Next, SciPy’s more
general nonlinear fitting function is used to fit the data to several alternate functions,
including the widely used Steinhart-Hart equation. Goodness of the fitted curve is
judged via residual plots. After obtaining the fitted calibration curve for a thermistor,
a computer-based digital thermometer is constructed.

Chapter 11: Data Analysis: Fast Fourier Transform. Using SciPy functions, readers write
Python programs to investigate the proper use of the fast Fourier transform (FFT).
Readers apply SciPy’s complex Fourier transform function to various sinusoidal inputs,
demonstrating that this function produces the expected complex-amplitude spectra. In
addition, a GUI-equipped program that simply plots the magnitude of the complex-
amplitude as a function of frequency is used to explore the effects of spectral leakage,



PREFACE

windowing, and aliasing. With that understanding in place, a computer-based spectrum
analyzer is constructed.

Chapter 12: Control of Stand-Alone Instruments Using VISA. Using PyVISA and NI-VISA,
Python-based control of an IEEE 488.2-interfaced stand-alone instrument over the Uni-
versal Serial Bus (USB) as well as the General Purpose Interface Bus (GPIB) is studied. The
Agilent 34410A digital multimeter (which has the same command set as digital multime-
ters from other manufacturers) is used to demonstrate the central concepts of IEEE 488.2
interface bus communication between a computer and stand-alone instrument, includ-
ing synchronization methods. Readers write GUI-equipped Python programs to control
the instrument’s data-taking functions. In the latter portion of the chapter, reader cre-
ate an instrument driver for the digital multimeter using the Python dictionary data
structure as a lookup table for instrument specifications.

Appendix A: Installing Python and IDLE. Instructions are given to assist readers in loading
Python and IDLE onto their computer. IDLE is used throughout the book to create and
execute Python programs.

Key features of The Python-Based Laboratory include its emphasis on real-world problem
solving, its early introduction and routine use of data-acquisition hardware, its Do It Your-
self projects and Use It! examples at the end of each chapter, and its healthy offering of
back-of-the-chapter homework problems.

Real-world problem solving: Chapter topics and exercises provide examples of how com-
monly encountered problems in the laboratory are solved by scientists and engineers.
Python features, along with relevant mathematical background, are introduced in the
course of solving these problems. The “best practice” strategies of modularity and code
reuse are emphasized so that readers optimize their use of Python. In addition, many of
the book’s programs are equipped with a graphical user interface, a desired feature in
computer programs that control experiments.

Data-acquisition usage throughout: Exercises involving DAQ hardware appear early and
then routinely in The Python-Based Laboratory. Of particular note, following the book’s
first five software-only chapters that teach the fundamentals of the Python programming
language, data acquisition using a DAQ device is covered in Chapters 6 and, depending on
the manufacturer of your DAQ device, 7 or 8. For a professor or self-learner who wishes to
devote only three or four weeks to instruction in Python-based data acquisition, Chapters
1 through 7 (or 8) will provide the needed instructional materials. For those planning a
more comprehensive study of Python-based lab skills, a digital thermometer and spec-
trum analyzer are constructed in Chapters 10 and 11, respectively. In Chapter 12, data are
acquired remotely from a stand-alone instrument using the USB and/or GPIB interface
bus. Additionally, commonly used interfacing circuits consisting of low-cost integrated
circuits are presented. Circuits include anti-aliasing filters, an audio amplifier, and a
thermocouple signal conditioner.

Do It Yourself projects: Each of the book’s chapters concludes with a Do It Yourself project
that poses an interesting problem and directs readers in finding a solution by applying
the chapter’s material. In some chapters, this project involves writing a program that
carries out a statistical analysis of flipping coins (Chapter 3), creates a square wave from
a combination of sine waves (Chapter 5), or writes and reads a binary-formatted data
file (Chapter 9); in other chapters, the reader constructs a computer-based instrument
including a millisecond-resolution stopwatch (Chapter 6), digital thermometer (Chapter
10), and a spectrum analyzer (Chapter 11).

iX



X PREFACE

Use It! examples: Ready-to-use example programs, which carry out common tasks
encountered in laboratory work, are presented at the end of each chapter. Some of
these examples involve programming solutions, for example, showing how to document
programs, test-run Python coding as “main” programs in order to find programming
bugs, and save data during runtime. Other examples are low-cost hardware solutions,
including anti-aliasing through the use of an eighth-order Butterworth lowpass fil-
ter, amplification and cold-junction compensation for a thermocouple temperature
measurement, and configuration of a LAN/Ethernet interface.

Back-of-the-chapter homework problems: A selection of homework-style problems is
included at the end of each chapter so that interested readers can further develop their
Python-based skills. In some of these problems, readers test their understanding by
applying the chapter topics to new applications (e.g., lock-in detection); in others, read-
ers use programs written within the chapter to explore important experimental issues
(e.g., frequency resolution of a fast Fourier transform). Finally, a number of problems
introduce readers to features of Python relevant to, but not included in, the chapter’s
text (e.g., code-execution timer).

To aid readers in creating their Python programs, the following conventions are used through-
out the book:

o Italic text signals the first-time use of important terms and concepts and highlights charac-
ter strings to be entered on a program’s graphical user interface using the keyboard.

« Bold text designates pull-down menu selections and graphical user interface label names.

e Constant Width text is used for the Python programs to be written by readers as well
as within paragraphs to refer to Python program elements. The programs themselves are
within a gray background.

« Straight Bold text designates the names of programs written by readers as well as the path
within the computer file system to those programs.

Any suggestions or corrections are gladly welcomed and can be sent to John Essick at
jessick@reed.edu.

Updates, answers to frequently asked questions, and ancillary materials for The Python-
Based Laboratory (including Python code for all programs within the book as well as solutions
to the problems) are available at http://academic.reed.edu/physics/faculty/essick.

Additionally, the book’s Python programs and problem solutions can be downloaded at
http://www.oup.com/us/essick.

I’d like to express my gratitude to the Physics Department at the University of Newcastle,
Australia who inspired me to undertake this project through a Fulbright Specialist visit, espe-
cially to Vicki Keast for arranging my visit and Lachlan Rogers for sharing his deep experience
with Python in teaching and in research. Also, much thanks to David Horn for his support with
Digilent products and many thanks to Devon Essick and Jennifer Heath for reading portions
of the book’s manuscript and providing invaluable feedback.

For their support and assistance in preparing The Python-Based Laboratory, 1 thank Dan
Taber and David Lipp of Oxford University Press and Thilagavathi Ezhumalai of Integra Soft-
ware Services. For their helpful comments and suggestions, I express my appreciation to the
four anonymous reviewers who provided early comments on the book as part of the OUP peer
review process.

Finally, to my wife Katie: Thank you for your love and support while I worked on this project.

John Essick
Portland, Oregon



Contents

1 Python Program Development

1.1 Python Programming Environment
1.2 Python Terminal Session
1.3 Object-Oriented Programming
1.4 Developing Parity-Test Code in Terminal Session
1.5 Creating and Running Parity-Test Program
1.6 Exceptions and Exceptions Handling
Do It Yourself
Use It!
Problems

2 Graphical User Interface Using Tkinter

2.1 Tkinter GUI Toolkit
2.2 Tkinter Basics
2.3 GUI-Equipped Parity-Test Program
2.4 Functions and Classes
2.5 Adding Trial Function to Parity-Test Program
2.6 Adding Parity-Test Function
2.7 Adding a GUI Frame
Do It Yourself
Use It!
Problems

3 Counted Looping and Waveform Plots

3.1 Programming Structures and Python Packages
3.2 Installing NumPy and Matplotlib from PyPI
3.3 Python for Loop
3.4 Iterable Objects: String and Lists
3.5 Sine-Wave Plot Using for Loop and List Comprehension
3.6 Importing Modules
3.7 Sine-Wave Plot Using NumPy and Vectorization
3.8 Properties of Digitized Data
3.9 Embedding Graph in Tkinter Window

Do It Yourself

Use It!

Problems

O ~1 U1 I DN N = =

—_—
N O

14

14
15
18
21
23
24
26
29
29
30

33

99
34
35
36
39
43
45
49
51
55
57
58



Xii CONTENTS

4 Conditional Looping and Real-Time Plots

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Programming Structures and Real-Time Plots
Python while Loop

Sine-Wave Plot Using while Loop

Real-Time Plotting Using while Loop
Real-Time Plotting Using Animation
Indexing and Slicing of Iterable Data Structure
Tuple Packing and Unpacking

Real-Time Plotting Using Blitting

Real-Time Plotting with GUI

Do It Yourself

Use It!

Problems

5 GUI-Equipped Waveform Simulator

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6 Introduction to Data-Acquisition Device Features

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10 Digital Input/Output Operation Using MAX and DAQami

Digitized Waveform Simulator
Installing SciPy From PyPI

SciPy Waveform Generation Functions
Waveform Creator Module

Running Module as “Main” Program
GUI Creator Module

Plot Creator Module

Waveform Simulator Program
Namespace and Scope

Do It Yourself

Use It!

Problems

Data-Acquisition Hardware

Interactive Utility Programs: MAX and DAQami
Analog Input Modes

Range and Resolution

Sampling Frequency and Aliasing Effect

Analog Input Operation Using MAX and DAQami

Analog Output

Analog Output Operation Using MAX and DAQami

Digital Input/Output

Do It Yourself
Use It!
Problems

64
65
66
67
69
71
74
75
78
80
80
82

87

87
88
89
91
93
94
106
109
115
117
120
123

129

129
151
135
136
137
138
145
146
149
150
154
156
161



7 Data Acquisition Using NI DAQ Device

7.1
7.2
Yo
74
7.5
7.6
7.7

Installing Software Drivers for NI DAQ Devices
DAQmx Basics

Simple Analog Input Operation on DC Voltage
Live Updating and Threading
Hardware-Timed Digital Oscilloscope

DC Voltage Source

Hardware-Timed Waveform Generator

Do It Yourself

Use It!

Problems

8 Data Acquisition Using MCC DAQ Device

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Installing Software Driver for MCC DAQ Devices

mcculw Basics

DAQ Device Configuration Using InstaCal
Simple Analog Input Operation on DC Voltage
Live Updating and Threading
Hardware-Timed Digital Oscilloscope

DC Voltage Source

Hardware-Timed Waveform Generator

Do It Yourself

Use It!

Problems

9 Data Files and Character Strings

9.1
9.2
99
9.4
9.5
9.6
9.1
9.8
9.9

Text and Binary Data Files

NumPy Text File Functions

Storing One-Dimensional Data Array
Escape Sequences and End-of-Line Markers
Storing Two-Dimensional Data Array
Reading One-Column Spreadsheet File
Reading Two-Column Spreadsheet File
File Paths

Unicode Character Coding Scheme

Do It Yourself

Use It!

Problems

10 Data Analysis: Curve Fitting

10.1
10.2
10.3

Thermistor Resistance-Temperature Data File
Temperature Measurement Using Thermistors
Least-Squares Curve-Fitting Method

CONTENTS

162

162
163
165
169
174
184
187
193
194
196

202

202
203
204
205
210
215
233
236
242
244
246

251

251
253
254
260
261
263
264
265
266
268
269
272

276

276
278
281

Xiil



Xiv

CONTENTS

10.4 Plotting Thermistor Calibration Data

10.5
10.6
10.7
10.8
10.9

Linear Least-Squares Curve Fitting Using polyfit()
GUI-Equipped Program for polyfit()

Nonlinear Least-Squares Curve Fitting Using curve fit()
GUI-Equipped Program for curve-fit()

Residual Plot

Do It Yourself

Use It!

Problems

11 Data Analysis: Fast Fourier Transform

111
11.2
1135
114
115
11.6
11.7
11.8
11.9
11.10
11.11
11.12

Quick Fast Fourier Transform Example
Fourier Transform

Discrete Sampling and the Nyquist Frequency
Discrete Fourier Transform

Fast Fourier Transform

FFT of Sinusoids

Applying FFT to Various Sinusoidal Inputs
Magnitude of Complex-Amplitude
Observing Spectral Leakage

Windowing

Estimating Frequency and Amplitude
Aliasing

Do It Yourself

Use It!

Problems

12 Control of Stand-Alone Instruments Using VISA

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14

VISA-Based Instrument Control Using PyVISA

VISA Session

IEEE 488.2 Standard

Common Commands

Status Reporting

Device-Specific Commands

Specific Hardware Used in this Chapter

Instrument Resource Name and Identification String
Simple VISA-Based Query Program with GUI
Message Termination

Getting and Setting Communication Properties Using VISA Attributes
Performing Measurement Over Interface Bus
Synchronization Methods

Measurement Operation Based on Serial Poll Method

283
285
286
290
295
297
302
303
304

308

308
315
316
317
318
519
320
323
326
329
335
338
339
340
342

348

349
351
352
353
353
355
358
359
362
365
366
367
372
375



CONTENTS

12.15 Measurement Operation Based on Service Request Method 379
12.16 Python Dictionary 382
12.17 Creating an Instrument Driver 383
12.18 Using the Instrument Driver to Write an Application Program 389

Do It Yourself 395

Use It! 397

Problems 398
APPENDIX: Installing Python and IDLE 399
A.1 Python Versions 399

A.2 Installing Python on Windows 399

A.3 Installing Python on Mac 400

A.4 Installing Python on Linux 401

A.5 Python Program Creation and IDLE Editor 401

Index 403

Programs Written By Readers of this Book 412



	Front_Matter_1.pdf
	Front_Matter_2.pdf
	Front_Matter_3.pdf
	Front_Matter_4.pdf
	Front_Matter_5.pdf
	Front_Matter_6.pdf
	Front_Matter_7.pdf
	Front_Matter_8.pdf
	Front_Matter_9.pdf
	Front_Matter_10.pdf

