Physics 200 Lecture 3

Root-Finding
Lecture 3

Physics 200
Laboratory

Monday, February 14th, 2011

The fundamental question answered by this week’s lab work will be: Given
a function F(z), find some/all of the values {z;} for which F(x;) =0. It’s a
modest goal, and we will use a simple method to solve the problem. But, as
we shall see, there are a wide range of physical problems that have, at their
heart, just such a question. We’'ll start in the simplest, polynomial setting,
and work our way up to the “shooting” method.

3.1 Physical Problems

We'll set up some direct applications of root-finding with familiar physical
examples, and then shift gears and define a numerical root-finding routine
that can be used to solve a very different set of problems.

3.1.1 Orbital Motion

In two-dimensions, with a spherically symmetric potential (meaning here
that V(z,y,2) = V(r), a function of a single variable, r = /22 + y2 + 22,
the distance to the origin) we can use circular coordinates to write the total
energy of a test particle moving under the influence of this potential as

E = %m<f2+7“2 ¢'>2) +V(r). (3.1)

Conservation of momentum tells us that the z-component of angular mo-
mentum is conserved, with L, = (r x p), = mr? ¢, so we can rewrite the
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3.1. PHYSICAL PROBLEMS Lecture 3

energy as:

E=—-mr B — 2
mire + o + V(r) (3.2)

where U (r) defines an “effective potential” — we have turned a two-dimensional
problem into a one-dimensional problem for the coordinate r, and an effec-
tive potential that governs the motion in this setting.

Since we know the energy of the system in terms of r, we can invert (3.2)

to get:
2 _ 9 E—-U(r)

rT =

- = F(r). (3.3)

Now we can ask for the “turning points” of orbital motion (if/when they ex-
ist), those points at which 7 = 0 — the answer is provided by radial locations
r; for which:

F(r;) =0, (3.4)

precisely the sort of root-finding problem of interest.

In cases like Newtonian gravity, where V(r) ~ 1/r, the resulting F(r) is
just a polynomial (in fact, quadratic), so we don’t need any fancy numerical
solutions. But for more complicated potentials, root-finding can be used
efficiently to isolate, at least numerically, the zeroes of the function F(r).

3.1.2 Area Minimization

Many “minimization” problems end in functions that require numerical root-
finding. As a simple example of this type of problem, consider a surface
connecting two rings of equal radii, R, separated a distance L as shown
in Figure 3.1. We want to find the surface with minimal area — soap films find
these minimal surfaces automatically, there the soap film is taking advantage
of a minimal energy configuration, leading to a stable equilibrium.

The immediate goal is a function s(z) that gives the radius of the surface
as a function of height. We’ll take z = 0 at the bottom ring, then z = L is
the height at the top ring. Our area expression follows from the azimuthal
symmetry — for a platelet extending from z to z + dz and going around an
infinitesimal angle d¢, the area is:

dA = sdg\/dz? + s'(2)2 d22, (3.5)
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":U

Figure 3.1: We want to find the function s(z), the radius as a function of
height, associated with a surface connecting two rings of radius R, separated
a distance L, that has minimal surface area.

as can be seen in Figure 3.2.

If we integrate this expression for the area in both ¢ and z, we get the total
area of the curve:

L
A=2r /0 s(2) V14 §(2)%dz. (3.6)

This formula is nice, but it proceeds from a given function of s(z). There
is a general method for taking such a functional (here A is a number that
depends on the function s(z), so A is itself a function of the function s(z) —
we call those functionals) and minimizing it — the result is an ODE for s(z)
that can be used to find s(z)!

When we carry out the minimization procedure in this problem, we get the
following ODE, with appropriate boundary conditions:

1+s%—ss"=0 s(0)=R s(L)=R. (3.7)

The general solution is:

(%

s(2) = a cosh(z - ﬁ) , (3.8)

for independent real constants o and 5 (with what dimensions?). Now for
the z = 0 boundary, we have:

5(0) = o COSh(i) =R (3.9)

I This procedure will become familiar to you in classical mechanics, it is an application
of variational calculus.
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s(z+dz) — s(z) = §'(2) dz

z dz? + s'(2)% dz=?

Figure 3.2: Calculating the infinitesimal hypotenuse for the platelet extend-
ing from z — z + dz and going around an arc of s(z) d¢.

and we must simultaneously solve:
L —

From the first equation, we can write 3 = o cosh™! (g), and then the second
equation becomes:

e COSh(L — cosh™! <R>> = R. (3.11)
« e

Define the function:
L
F(z)==x cosh(x — cosh™? <];>> - R (3.12)

it is clear that we are interested in the roots, those define the final constant
of integration for our solution: F'(a) = 0. Note the importance of actually
plotting F'(x) — not all functions F'(x) have roots.

3.2 Shooting

Another class of problems we can solve with an ability to solve for the roots
of an arbitrary function are known as “shooting” problems. They come in a
few different flavors — we’ll discuss a classic case, and the one that motivates
the violent name first, then consider quantum mechanical applications.

4 of 13
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3.2.1 Range

We have a cannon that can fire projectiles with speed v at an angle 6.
Question: What angle 6 should we use to force our cannon to hit a target a
distance R away?

Here, we know the answer automatically — the trajectory of the slug is given
by:
x(t) =v cosOt

1 3.13
y(t):vsinetfagt% (3.13)
and we can solve for y as a function of z, since t = % then
1 x 2
—tanfz— g ) 3.14
y(r) = tamb — g (2 (3.14)

Now the range R is the location of z when y = 0, a root-finding issue, of
course, but in this case, we can solve directly:

2

1
R= % sin(20) — 0 = 5 sin~ ! <1j29> . (3.15)

Notice that one important element of this calculation was our ability to make
the height, y, a function of . We can do this pretty generically starting
from Newton’s second law — if y(t) = y(z(t)), then % = d%(f) 9 — o/ (x) vy,

so that we take % — Vg d%, then

Fx:mvx%

X

oo (dedy )y ey PO
v T de dx Tdx2 | T % dx T dx?’

and in this form, we can start with almost any force, and develop the ODE
version of the range formula with height parametrized by x.

As a check, take F; = 0, and F,, = —m g, then the above reads:

dvy 7 g

— =0 == 3.17
M0 gy = (317)
and v, is a constant, equal to v cosf for us, so

2

" g 1 €T
=7 —tanfo — g - 3.1
y (@) v?2 cos? 6 — y() anve 2 g v2 cos? 6’ (3.18)
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as before. This time, the tan § term comes up naturally, since the x deriva-
tive is related to the time derivative at zero: §(0) = 3/(0)v;(0), and v,(0) =
%(0) = v cosh, so we have §(0) = 3'(0) 2(0), and then 3'(0) = ¢(0)/%(0) =
tan 6.

Suppose, for fun, we try introducing wind-resistance, a drag term of the
form: F, = —ywvv. This gives us an additional force in both directions, and
Newton’s second law tells us that:

mi=—-y\Vi2+9y2r my=-mg—yVi*+y*y, (3.19)
from which we learn, using (3.16), that:

v (@) = ~ L Ty ()
by (3.20)

There is no longer any simple answer, but we can still imagine solving this
equation numerically; it is, after all, a second order ODE, and we have
a method for solving those. Suppose we ask the same question, in this
context: Given v, find 0 so that a projectile hits a target a distance R away
from the starting point. Our “initial conditions” are v,(0) = v cos#, and
vy(0) = tan @ as always. Define the function: Verlet(f) to be the numerical
solution for y(R) given an angle 0, then we have a function whose zero is
precisely the correct 6, i.e. we want to find the roots of:

F(x) = Verlet(x), (3.21)

those roots will be the values of x for which y = 0 at x = R. So we can
define a numerical function of a single variable, and perform our (numerical)
root-finding on that.

3.3 Quantum Mechanics

The time-independent Schrédinger equation governing v (x) reads:

2
o ) + V(@) () = Bub(a), (3.22)

where () is the “wavefunction” describing a particle of mass m moving
under the influence of a potential V(z) (in one dimension) with energy E.
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We interpret 1 (z)* 1(z) dr as the probability of finding the particle “near”
the location z (i.e. in a window of width dx centered about z). From this
point of view, it is clear that we must have:

/00 W(x)* P(x)de =1, (3.23)

i.e. the particle must be somewhere.

We can rewrite the above ODE to look more like Newton’s second law, an
equation we know how to solve numerically:

2 = e (B V(@) v(). (3.24)

While we’re at it, we may as well nondimensionalize the above — let z = x¢ ¢
where ¢ is dimensionless, then:

d*y(q)
dq?

_ . mxd ~ m a3
= ~(E-V(0) v(@) EEQWOE W@=2W°WW

(3.25)

Associated with this ODE must be some boundary conditions. This is where
the shooting method will play an important role. We typically provide
boundary conditions that are physically motivated — like 1(+o00) = 0, so
that the probability of finding a function out at spatial infinity is zero. On
a computer, of course, we have to approximate infinity with some finite
value, and in our non-dimensionalized variable ¢, the only requirement is
that ¢ > 1. For simplicity, we’ll work on the half-line, so that we’ll take
(0) = 0 and 1(¢oo) = 0 for some value ¢, meant to capture the behavior
at spatial infinity.

Now we can begin to see the problem — our second-order ODE solution
method is Verlet, and it requires an initial value and initial derivative value,
so ¢(0) and ¢'(0). We need to turn a boundary condition into an initial
condition. In addition, we know that the ODE (3.25) says nothing about
the magnitude of ¥ (z) — that magnitude is fixed separately through the
condition (3.23), so if we set ¢(0) = 0, then ’(0) is actually unconstrained
— what is the variable that we can move around to correctly match the
boundary conditions? Answer: E (or its dimensionless form, E).

Our problem, then, amounts to finding both ¢(q) and E, in a particular

setting. The way we will accomplish this functionally is to define Verlet(E)
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to be the function that gives the numerical value of 1 (gso) given a value of
E?. Then the function whose roots we want to find is:

F(z) = Verlet(z) (3.26)

and those roots will tell us the allowed energies of the system. This is clearly
a very different sort of physical system, and yet the solution to a variety of
problems here boils down to finding the roots of a function F'(x).

Example: Particle in a box

For a particle constrained to the interior of a “one-dimensional square
well”, we have the potential:

oo z<0orz>a
v(x)_{ 0 0<z<a (3.27)

Take g = a, then in terms of (3.25), we set V(¢q) = 0 for the interior,
and require that ¢(0) = (1) = 0. Now, we know the solution to the
resulting second order ODE:

W'(q) = —E(q) — $(g) = A cos(VEq) + B sin(VEq).  (3.28)

If we require that ¢(0) = 0, then we learn that A = 0. We are left with
the second boundary condition, at ¢ = 1:

¥(1) = B sin(VE) =0 (3.29)

and this could be true if B = 0, but then ¢(q) = 0, and we have a
particle that is not in the box at all (nor outside it), i.e. no particle.
Instead, we take:

VE=nn— E=n?r (3.30)
The boundary condition here has imposed a requirement on the allowed

energies of the system — sin(n ) = 0 for integer n, so the only particle
2 2h2
n2777;a2

energies you can have inside the box come in discrete steps: E =
for integer n.

2What happened to 1’ (0)? The value of the derivative of 1(z) at zero is arbitrary, set
externally, so all we need is to give it a non-zero value, say ¢’ (0) = 1. Note that we have
chosen the boundary conditions 1(0) = ¥ (¢s) = 0, but there are many cases in which
¥(0) is, instead, a constant and v’ (0), say, is zero. In those cases, we set 1(0) = 1, and
our shooting method still proceeds in terms of E.
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3.4 Bisection

Finally, we come to the relevant numerical method — we will use bisection
to find a zero of a function F'(x) lying in between two initial points, xy and
z,. How do we know that there is a root between those two points? What
if there is more than one root in there? The easiest thing to do is to plot
F(x), always an option, and see roughly where the zero crossings are. Then
bookend a particular zero of interest, and hone in on it using the bisection
routine.

Bisection itself is almost entirely defined by its name. We start with two
locations, =y and z,, we evaluate F(z;) and F(z,) — if a root lies between
these two, then one will be positive, and the other negative. Now, we eval-
uate the function F at the midpoint z,, = % (z¢ + 2,). If F(2,,) has the
same sign as F'(xy), then the root lies between x,, and z, —if F(z,,) has the
same sign as F'(z,), then the root lies between z; and x,,. In either case,
we update the labels x; and x, appropriately, so that the root now lies in
an interval half as large as the original one. We continue this process until
F(z,,) is as small as we want (set by some external tolerance ¢ ~ 10712 or
s0). A schematic of the first few steps of the process is shown in Figure 3.3.

F(z) A

2 4
[ H | [ >
1 | >
1 1
Ty~ L
-
2 o
/// A

Figure 3.3: The successive bisections for the function F'(x). Here, x} and
27 refer to the left and right endpoints of the interval for the n'" iteration
of the bisection.
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Lab

In this lab, you will implement the bisection routine sketched in the notes.
You can use either a While loop, or a recursive approach. The first problem
should ensure that your routine is working properly. Don't forget, in all cases,
to plot the function whose roots you are trying to find — that will allow you
to successively bracket them for bisection honing. Use g = 9.8 m/s? as the
constant associated with gravity near the surface of the earth.

Problem 3.1

Write your bisection function — it should take, as arguments, a function F (the
function whose roots we are interested in), an initial bracketing, a pair x1 and
xr, and a tolerance eps that specifies how close to zero we should be before
exiting. Try your bisection routine on

F(z) =23 — 72> =2z +5. (3.31)

Find all three roots, using eps= 1072, and record your results below (show five
digits):
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Problem 3.2

Generate the range formula modified as follows (start from the solution (3.14)):
We want the projectile to land on a hill whose height is given by h(z) (a
monotonically increasing function of ), a distance R away. Write the function
F(z) whose roots you must find in order to find the starting angle 6, given a
muzzle speed v, below
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Problem 3.3

Continuing with the above problem, find the angle 6 given v = 100 m/s, and
a target range of R = 100 m, use h(x) = ﬁyﬂ as your height function, and
write the angle 6 you find below (use ¢ = 10~ in your bisection of the function

F(z) you generated in the previous problem):

What happens if you instead set v = 10 m/s? What is your physical interpre-
tation of this phenomenon?
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Problem 3.4

Write a Verlet-based function that takes Etilde as input, solves (3.25) with

V(g) = 0, ¥(0) = 0, ¢/(0) = 1.0, and returns the value ¥(1). Call this
function VerletShoot. What value does your function return when you send

in Etilde= .5 using N = 2000 steps?

Problem 3.5

Use your function VerletShoot, together with your bisection routine for root-
finding, to determine the first four energies E consistent with the boundary
condition 9(1) = 0 with eps= 10~ (for the bisection routine), record those
energies (five digits) below (check against the actual answer):
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