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Filters

01° Let X be any set. By a filter on X, we mean a nonempty family F of
subsets of X which meets the following conditions:

(1) b¢rF
(2) FeF,GeF= FNGeF
(2) FeF,FCH=H¢eF

where F', G, and H are any subsets of X.

02° It may happen that a nonempty family F, of subsets of X meets con-
ditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the
family F consisting of all subsets G of X such that there is some F in F for
which F' C G. Obviously, F is a filter on X, as it meets not only conditions
(1) and (2) but also (3). We say that F, generates F.

03° For instance, we may select a member £ of X, then take F, to be the
family consisting of the singleton {{}. In such a case, we refer to the filter
generated by F, as the principal filter on X defined by £. We denote it by
Pe.

04° Let F be afilter on X. Let A and B be subsets of X such that AUB € F.
We contend that if B ¢ F then there is a filter G on X such that:

FU{A}CG

To prove the contention, we argue as follows. Let us form the family G, of
subsets of X of the form FFN A, where F runs through F. Obviously, G, meets
condition (2). Moreover, if there were some F in F for which F N A = () then
FN(AUB) = FNB, so that B would be in F, a contradiction. Consequently,
G, meets condition (1). Now we need only take G to be the filter generated
by G,.

Maximal Filters
05° Let F be the family of all filters on X. Let us supply F with a partial

ordering, as follows:
F=F = FcCcF



where ' and F” are any filters on X. With respect to the partial ordering
on F just defined, we plan to study the mazimal filters. These are the filters
U on X such that, for any filter F on X, if Y C F then U = F. Very often,
one refers to such filters as wltrafilters.

06° Obviously, the principal filters on X are maximal with respect to the
foregoing partial ordering. We inquire whether there are any others.

07° Let U be an ultrafilter on X. With reference to article 04°, we find that,
for any subsets A and B of X, if AUB € U then A € U or B € U. We infer
that U meets the finite union condition, which is to say that, for any finite
family A of subsets of X, if:

UAaeu

then there is at least one set A in A such that A € U.

08° In fact, the foregoing condition characterizes ultrafilters. To see that it
is S0, let us introduce a filter F on X which meets the finite union condition
and let us suppose that F is not maximal. Accordingly, we may introduce a
filter G on X and a subset A of X such that F C G, A¢ F, and A € G. Now
the subset A and its complement B in X yield AU B € F while A ¢ F and
B ¢ F. Consequently, the supposition is untenable. Hence, F is maximal.

09° By the foregoing discussion, we infer that, for any ultrafilter ¢4 on X, U
is principal iff:

(u+#0
In fact, for any member £ of X, if:

ce(u
then, for any V in U, {€} U (V\{£}) € U, hence, {¢} € U, so that U = Ps.
Existence of Maximal Filters
10° From this point forward, let us assume that X is infinite.
11° Let £ be the filter on X consisting of all subsets E for which the com-
plement F of F in X is finite. In turn, let F, be the family of all filters F on

X such that £ C F.

12* Verify that £ is not maximal.



13° By a chain in F,, we mean a subfamily C of F, such that, for any filters
Fand F'in C, F/ < F" or F'" < F'. We may say that C is linearly ordered.
For such a family C, we find that:

¢g=Jc

is a filter in F, and G is an upper bound for C, in the sense that, for each
filter 7 in C, F C G.

14° By the foregoing observation, we conclude that every chain in F, is
bounded. Now the Lemma of Zorn implies that there exist filters U in F,
which are maximal. Obviously, such filters are maximal in F as well. And
they are not principal.

The Space of Ultrafilters

15° Let X be any set. Let U be the family of all ultrafilters on X. For
amusement, let us note that:

U e P(P(P(X)))

We intend to supply U with a topology. The corresponding topological space
proves to have remarkable properties.

16° To that end, let A be any subset of X. Let T 4 be the subset of U defined
as follows:
Ta={UecU: Aec U}

These subsets of U form the base for the topology on U, soon to be defined.
17* Note that Ty = ) and Tx = U. Verify that:
BCC—=—TpC Te

Tpnc =TpNTe, Tpuec=TpUTe, Tx\p=U\Tp
where B, C, and D are any subsets of X.

18° In turn, let A be any subset of P(X). Let T 4 be the subset of U defined
as follows:
Ta=|J Ta
AcA
These subsets of U form the topology on U. They are the open subsets of U.

By definition, they are the various unions of families of basic open subsets of
U.



Properties

19° Now let us prove that the topological space U is hausdorff, compact, and
extremely disconnected.

20° First, hausdorff. Let U1 and U be distinct ultrafilters in U:
U # U;

Of course, there must be some subset A of X such that A € U; but A ¢ Us.
Hence, B = X\ A € Us. Consequently:

UreTy, Us €T, ToNTr=10
It follows that X is hausdorff.
21° Second, compact. Let us introduce an open covering of U:
Ca={Ta:Ac A}

where A is a subset of P(P(X)). By the definition of covering:

U Ta=0U
AcA

We must show that there is a finite subset F' of A such that:

U Ta=U
A€F

To that end, let B be the subset of P(X) defined as follows:

B=[JA
Obviously:
Ute=UJ (T =) Ta=0U
BEB ACA BeA AcA
Moreover, for any B in B, there is some A in A such that B € A, so that:

Tp CTxy

Now we need only show that there is a finite subset F of B such that:

(o) U Ts=U

BeF



In effect, we have reduced the context of a general covering of U by open
subsets to the context of a basic covering of U by basic open subsets.

22° By the finite union condition, condition (o) is equivalent to the following
condition:

(o) U B=x

BeF

Let us suppose that there is no finite subset F of B such that condition (e)
holds true. It would follow that the family C of complements:

C={C=X\B:BecB}

generates a filter on X. Consequently, there would be an ultrafilter &/ on X
which includes C. It would follow that:

ug¢ |JTs

BeB

a contradiction. So the supposition is untenable. Hence, there is finite subset
F of B such that condition (e) holds true. The proof is complete.

23® Verify that, for any subset D of X, T'p is not only open but also compact.

24° Third, extremely disconnected. Let A be any subset of P(X). We will
show that there is a subset B of X that:

(%) clo(T4)=Tp

In this way, we will prove that the closure of any open subset of U is itself
open, in fact, that it is a basic open subset of U.

25° To that end, let us introduce the following sets:
B=|JA C=X\B, B=P(B), C=P(C)

One can easily check that T¢ is the largest (under the relation of inclusion)
among all open subsets of U which are disjoint from T 4. Consequently:

U\TC = ClO(T_A)



However, Ty = T and T¢ = T¢. It follows that:
Tp =U\T¢c =clo(T4)
The proof is complete.
26* For each member & of X, we may identify ¢ with the corresponding

principal ultrafilter P¢. In this way, we obtain an injective mapping 7 carrying
X to U:

m(€) = Pe

where £ is any member of X. Show that the range of « is dense in U:
clo(ran(m)) =U
Show that, for each member ¢ of X, 7(£) is an isolated point in U. In fact:

{PE)} =T



