SPACES OF ULTRAFILTERS

Thomas Wieting Reed College, 2014

Filters

01° Let X be any set. By a *filter* on X, we mean a nonempty family \mathcal{F} of subsets of X which meets the following conditions:

- (1) $\emptyset \notin \mathcal{F}$
- (2) $F \in \mathcal{F}, \ G \in \mathcal{F} \Longrightarrow F \cap G \in \mathcal{F}$
- (2) $F \in \mathcal{F}, F \subseteq H \Longrightarrow H \in \mathcal{F}$

where F, G, and H are any subsets of X.

 02° It may happen that a nonempty family \mathcal{F}_{o} of subsets of X meets conditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the family \mathcal{F} consisting of all subsets G of X such that there is some F in \mathcal{F} for which $F \subseteq G$. Obviously, \mathcal{F} is a filter on X, as it meets not only conditions (1) and (2) but also (3). We say that \mathcal{F}_{o} generates \mathcal{F} .

 03° For instance, we may select a member ξ of X, then take \mathcal{F}_o to be the family consisting of the singleton $\{\xi\}$. In such a case, we refer to the filter generated by \mathcal{F}_o as the *principal* filter on X defined by ξ . We denote it by \mathcal{P}_{ξ} .

04° Let \mathcal{F} be a filter on X. Let A and B be subsets of X such that $A \cup B \in \mathcal{F}$. We contend that if $B \notin \mathcal{F}$ then there is a filter \mathcal{G} on X such that:

$$\mathcal{F} \cup \{A\} \subseteq \mathcal{G}$$

To prove the contention, we argue as follows. Let us form the family \mathcal{G}_o of subsets of X of the form $F \cap A$, where F runs through \mathcal{F} . Obviously, \mathcal{G}_o meets condition (2). Moreover, if there were some F in \mathcal{F} for which $F \cap A = \emptyset$ then $F \cap (A \cup B) = F \cap B$, so that B would be in \mathcal{F} , a contradiction. Consequently, \mathcal{G}_o meets condition (1). Now we need only take \mathcal{G} to be the filter generated by \mathcal{G}_o .

Maximal Filters

 05° Let **F** be the family of all filters on X. Let us supply \mathcal{F} with a partial ordering, as follows:

$$\mathcal{F}' \preceq \mathcal{F}' \quad \Longleftrightarrow \quad \mathcal{F}' \subseteq \mathcal{F}''$$

where \mathcal{F}' and \mathcal{F}'' are any filters on X. With respect to the partial ordering on **F** just defined, we plan to study the *maximal* filters. These are the filters \mathcal{U} on X such that, for any filter \mathcal{F} on X, if $\mathcal{U} \subseteq \mathcal{F}$ then $\mathcal{U} = \mathcal{F}$. Very often, one refers to such filters as *ultrafilters*.

 06° Obviously, the principal filters on X are maximal with respect to the foregoing partial ordering. We inquire whether there are any others.

07° Let \mathcal{U} be an ultrafilter on X. With reference to article 04°, we find that, for any subsets A and B of X, if $A \cup B \in \mathcal{U}$ then $A \in \mathcal{U}$ or $B \in \mathcal{U}$. We infer that \mathcal{U} meets the *finite union condition*, which is to say that, for any finite family \mathcal{A} of subsets of X, if:

$$| \mathcal{A} \in \mathcal{U}$$

then there is at least one set A in \mathcal{A} such that $A \in \mathcal{U}$.

 08° In fact, the foregoing condition characterizes ultrafilters. To see that it is so, let us introduce a filter \mathcal{F} on X which meets the finite union condition and let us suppose that \mathcal{F} is not maximal. Accordingly, we may introduce a filter \mathcal{G} on X and a subset A of X such that $\mathcal{F} \subseteq \mathcal{G}, A \notin \mathcal{F}$, and $A \in \mathcal{G}$. Now the subset A and its complement B in X yield $A \cup B \in \mathcal{F}$ while $A \notin \mathcal{F}$ and $B \notin \mathcal{F}$. Consequently, the supposition is untenable. Hence, \mathcal{F} is maximal.

09° By the foregoing discussion, we infer that, for any ultrafilter \mathcal{U} on X, \mathcal{U} is principal iff:

 $\bigcap \mathcal{U} \neq \emptyset$

In fact, for any member ξ of X, if:

 $\xi\in \bigcap \mathcal{U}$

then, for any V in $\mathcal{U}, \{\xi\} \cup (V \setminus \{\xi\}) \in \mathcal{U}$, hence, $\{\xi\} \in \mathcal{U}$, so that $\mathcal{U} = \mathcal{P}_{\xi}$.

Existence of Maximal Filters

 10° From this point forward, let us assume that X is infinite.

11° Let \mathcal{E} be the filter on X consisting of all subsets E for which the complement F of E in X is finite. In turn, let \mathbf{F}_o be the family of all filters \mathcal{F} on X such that $\mathcal{E} \subseteq \mathcal{F}$.

12• Verify that \mathcal{E} is not maximal.

13° By a *chain* in \mathbf{F}_o , we mean a subfamily \mathbf{C} of \mathbf{F}_o such that, for any filters \mathcal{F}' and \mathcal{F}'' in $\mathbf{C}, \mathcal{F}' \preceq \mathcal{F}''$ or $\mathcal{F}'' \preceq \mathcal{F}'$. We may say that \mathbf{C} is *linearly* ordered. For such a family \mathbf{C} , we find that:

$$\mathcal{G} = \bigcup \mathbf{C}$$

is a filter in \mathbf{F}_o and \mathcal{G} is an upper bound for \mathbf{C} , in the sense that, for each filter \mathcal{F} in $\mathbf{C}, \mathcal{F} \subseteq \mathcal{G}$.

14° By the foregoing observation, we conclude that every chain in \mathbf{F}_o is bounded. Now the Lemma of Zorn implies that there exist filters \mathcal{U} in \mathbf{F}_o which are maximal. Obviously, such filters are maximal in \mathbf{F} as well. And they are not principal.

The Space of Ultrafilters

15° Let X be any set. Let **U** be the family of all ultrafilters on X. For amusement, let us note that:

$$\mathbf{U} \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$$

We intend to supply \mathbf{U} with a topology. The corresponding topological space proves to have remarkable properties.

16° To that end, let A be any subset of X. Let \mathbf{T}_A be the subset of U defined as follows:

$$\mathbf{T}_A = \{ \mathcal{U} \in \mathbf{U} : A \in \mathcal{U} \}$$

These subsets of **U** form the *base* for the topology on **U**, soon to be defined.

17• Note that $\mathbf{T}_{\emptyset} = \emptyset$ and $\mathbf{T}_X = \mathbf{U}$. Verify that:

$$B \subseteq C \Longrightarrow \mathbf{T}_B \subseteq \mathbf{T}_C$$

$$\mathbf{T}_{B\cap C} = \mathbf{T}_B \cap \mathbf{T}_C, \quad \mathbf{T}_{B\cup C} = \mathbf{T}_B \cup \mathbf{T}_C, \quad \mathbf{T}_{X\setminus D} = \mathbf{U} \setminus \mathbf{T}_D$$

where B, C, and D are any subsets of X.

18° In turn, let \mathcal{A} be any subset of $\mathcal{P}(X)$. Let $\mathbf{T}_{\mathcal{A}}$ be the subset of \mathbf{U} defined as follows:

$$\mathbf{T}_{\mathcal{A}} = \bigcup_{A \in \mathcal{A}} \mathbf{T}_A$$

These subsets of \mathbf{U} form the topology on \mathbf{U} . They are the *open* subsets of \mathbf{U} . By definition, they are the various unions of families of basic open subsets of \mathbf{U} .

Properties

 $19^\circ~$ Now let us prove that the topological space ${\bf U}$ is hausdorff, compact, and extremely disconnected.

20° First, hausdorff. Let \mathcal{U}_1 and \mathcal{U}_2 be distinct ultrafilters in U:

$$\mathcal{U}_1 \neq \mathcal{U}_2$$

Of course, there must be some subset A of X such that $A \in \mathcal{U}_1$ but $A \notin \mathcal{U}_2$. Hence, $B = X \setminus A \in \mathcal{U}_2$. Consequently:

$$\mathcal{U}_1 \in \mathbf{T}_A, \ \mathcal{U}_2 \in \mathbf{T}_B, \ \mathbf{T}_A \cap \mathbf{T}_B = \emptyset$$

It follows that \mathbf{X} is hausdorff.

21° Second, compact. Let us introduce an open covering of U:

$$C_A = \{T_A : A \in A\}$$

where **A** is a subset of $\mathcal{P}(\mathcal{P}(X))$. By the definition of covering:

$$\bigcup_{\mathcal{A}\in\mathbf{A}}\mathbf{T}_{\mathcal{A}}=\mathbf{U}$$

We must show that there is a finite subset \mathbf{F} of \mathbf{A} such that:

$$\bigcup_{\mathcal{A}\in \mathbf{F}}\mathbf{T}_{\mathcal{A}}=\mathbf{U}$$

To that end, let \mathcal{B} be the subset of $\mathcal{P}(X)$ defined as follows:

$$\mathcal{B} = \bigcup \mathbf{A}$$

Obviously:

$$\bigcup_{B \in \mathcal{B}} \mathbf{T}_B = \bigcup_{\mathcal{A} \in \mathbf{A}} (\bigcup_{B \in \mathcal{A}} \mathbf{T}_B) = \bigcup_{\mathcal{A} \in \mathbf{A}} \mathbf{T}_{\mathcal{A}} = \mathbf{U}$$

Moreover, for any B in \mathcal{B} , there is some \mathcal{A} in A such that $B \in \mathcal{A}$, so that:

 $\mathbf{T}_B \subseteq \mathbf{T}_{\mathcal{A}}$

Now we need only show that there is a finite subset \mathcal{F} of \mathcal{B} such that:

$$(\circ) \qquad \qquad \bigcup_{B \in \mathcal{F}} \mathbf{T}_B = \mathbf{U}$$

In effect, we have reduced the context of a general covering of \mathbf{U} by open subsets to the context of a basic covering of \mathbf{U} by basic open subsets.

22° By the finite union condition, condition (\circ) is equivalent to the following condition:

$$(\bullet) \qquad \qquad \bigcup_{B \in \mathcal{F}} B = X$$

Let us suppose that there is no finite subset \mathcal{F} of \mathcal{B} such that condition (•) holds true. It would follow that the family \mathcal{C} of complements:

$$\mathcal{C} = \{ C = X \setminus B : B \in \mathcal{B} \}$$

generates a filter on X. Consequently, there would be an ultrafilter \mathcal{U} on X which includes \mathcal{C} . It would follow that:

$$\mathcal{U} \notin \bigcup_{B \in \mathcal{B}} \mathbf{T}_B$$

a contradiction. So the supposition is untenable. Hence, there is finite subset \mathcal{F} of \mathcal{B} such that condition (•) holds true. The proof is complete.

23° Verify that, for any subset D of X, \mathbf{T}_D is not only open but also compact.

24° Third, extremely disconnected. Let \mathcal{A} be any subset of $\mathcal{P}(X)$. We will show that there is a subset B of X that:

(*)
$$clo(\mathbf{T}_{\mathcal{A}}) = \mathbf{T}_{B}$$

In this way, we will prove that the closure of any open subset of \mathbf{U} is itself open, in fact, that it is a basic open subset of \mathbf{U} .

 25° To that end, let us introduce the following sets:

$$B = \bigcup \mathcal{A}, \quad C = X \setminus B, \quad \mathcal{B} = \mathcal{P}(B), \quad \mathcal{C} = \mathcal{P}(C)$$

One can easily check that $\mathbf{T}_{\mathcal{C}}$ is the largest (under the relation of inclusion) among all open subsets of U which are disjoint from $\mathbf{T}_{\mathcal{A}}$. Consequently:

$$\mathbf{U} \backslash \mathbf{T}_{\mathcal{C}} = clo(\mathbf{T}_{\mathcal{A}})$$

However, $\mathbf{T}_{\mathcal{B}} = \mathbf{T}_{B}$ and $\mathbf{T}_{\mathcal{C}} = \mathbf{T}_{C}$. It follows that:

$$\mathbf{T}_B = \mathbf{U} \backslash \mathbf{T}_C = clo(\mathbf{T}_{\mathcal{A}})$$

The proof is complete.

26• For each member ξ of X, we may identify ξ with the corresponding principal ultrafilter \mathcal{P}_{ξ} . In this way, we obtain an injective mapping π carrying X to U:

$$\pi(\xi) = \mathcal{P}_{\xi}$$

where ξ is any member of X. Show that the range of π is dense in U:

$$clo(ran(\pi)) = \mathbf{U}$$

Show that, for each member ξ of X, $\pi(\xi)$ is an isolated point in **U**. In fact:

 $\{\mathcal{P}(\xi)\}=\mathbf{T}_{\{\xi\}}$