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Filters

01◦ Let X be any set. By a filter on X , we mean a nonempty family F of
subsets of X which meets the following conditions:

(1) ∅ /∈ F
(2) F ∈ F , G ∈ F =⇒ F ∩G ∈ F
(2) F ∈ F , F ⊆ H =⇒ H ∈ F

where F , G, and H are any subsets of X .

02◦ It may happen that a nonempty family Fo of subsets of X meets con-
ditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the
family F consisting of all subsets G of X such that there is some F in F for
which F ⊆ G. Obviously, F is a filter on X , as it meets not only conditions
(1) and (2) but also (3). We say that Fo generates F .

03◦ For instance, we may select a member ξ of X , then take Fo to be the
family consisting of the singleton {ξ}. In such a case, we refer to the filter
generated by Fo as the principal filter on X defined by ξ. We denote it by
Pξ.

04◦ Let F be a filter on X . Let A and B be subsets ofX such that A∪B ∈ F .
We contend that if B /∈ F then there is a filter G on X such that:

F ∪ {A} ⊆ G

To prove the contention, we argue as follows. Let us form the family Go of
subsets of X of the form F ∩A, where F runs through F . Obviously, Go meets
condition (2). Moreover, if there were some F in F for which F ∩A = ∅ then
F ∩(A∪B) = F ∩B, so that B would be in F , a contradiction. Consequently,
Go meets condition (1). Now we need only take G to be the filter generated
by Go.

Maximal Filters

05◦ Let F be the family of all filters on X . Let us supply F with a partial
ordering, as follows:

F ′ � F ′ ⇐⇒ F ′ ⊆ F ′′
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where F ′ and F ′′ are any filters on X . With respect to the partial ordering
on F just defined, we plan to study the maximal filters. These are the filters
U on X such that, for any filter F on X , if U ⊆ F then U = F . Very often,
one refers to such filters as ultrafilters .

06◦ Obviously, the principal filters on X are maximal with respect to the
foregoing partial ordering. We inquire whether there are any others.

07◦ Let U be an ultrafilter on X . With reference to article 04◦, we find that,
for any subsets A and B of X , if A ∪B ∈ U then A ∈ U or B ∈ U . We infer
that U meets the finite union condition, which is to say that, for any finite
family A of subsets of X , if: ⋃

A ∈ U
then there is at least one set A in A such that A ∈ U .

08◦ In fact, the foregoing condition characterizes ultrafilters. To see that it
is so, let us introduce a filter F on X which meets the finite union condition
and let us suppose that F is not maximal. Accordingly, we may introduce a
filter G on X and a subset A of X such that F ⊆ G, A /∈ F , and A ∈ G. Now
the subset A and its complement B in X yield A ∪ B ∈ F while A /∈ F and
B /∈ F . Consequently, the supposition is untenable. Hence, F is maximal.

09◦ By the foregoing discussion, we infer that, for any ultrafilter U on X , U
is principal iff: ⋂

U 	= ∅
In fact, for any member ξ of X , if:

ξ ∈
⋂

U

then, for any V in U , {ξ} ∪ (V \{ξ}) ∈ U , hence, {ξ} ∈ U , so that U = Pξ.

Existence of Maximal Filters

10◦ From this point forward, let us assume that X is infinite.

11◦ Let E be the filter on X consisting of all subsets E for which the com-
plement F of E in X is finite. In turn, let Fo be the family of all filters F on
X such that E ⊆ F .

12• Verify that E is not maximal.
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13◦ By a chain in Fo, we mean a subfamily C of Fo such that, for any filters
F ′ and F ′′ in C, F ′ � F ′′ or F ′′ � F ′. We may say that C is linearly ordered.
For such a family C, we find that:

G =
⋃

C

is a filter in Fo and G is an upper bound for C, in the sense that, for each
filter F in C, F ⊆ G.

14◦ By the foregoing observation, we conclude that every chain in Fo is
bounded. Now the Lemma of Zorn implies that there exist filters U in Fo

which are maximal. Obviously, such filters are maximal in F as well. And
they are not principal.

The Space of Ultrafilters

15◦ Let X be any set. Let U be the family of all ultrafilters on X . For
amusement, let us note that:

U ∈ P(P(P(X)))

We intend to supply U with a topology. The corresponding topological space
proves to have remarkable properties.

16◦ To that end, let A be any subset of X . Let TA be the subset ofU defined
as follows:

TA = {U ∈ U : A ∈ U}
These subsets of U form the base for the topology on U, soon to be defined.

17• Note that T∅ = ∅ and TX = U. Verify that:

B ⊆ C =⇒ TB ⊆ TC

TB∩C = TB ∩TC , TB∪C = TB ∪TC , TX\D = U\TD

where B, C, and D are any subsets of X .

18◦ In turn, let A be any subset of P(X). Let TA be the subset of U defined
as follows:

TA =
⋃

A∈A
TA

These subsets of U form the topology on U. They are the open subsets of U.
By definition, they are the various unions of families of basic open subsets of
U.
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Properties

19◦ Now let us prove that the topological space U is hausdorff, compact, and
extremely disconnected.

20◦ First, hausdorff. Let U1 and U2 be distinct ultrafilters in U:

U1 	= U2

Of course, there must be some subset A of X such that A ∈ U1 but A /∈ U2.
Hence, B = X\A ∈ U2. Consequently:

U1 ∈ TA, U2 ∈ TB , TA ∩TB = ∅

It follows that X is hausdorff.

21◦ Second, compact. Let us introduce an open covering of U:

CA = {TA : A ∈ A}

where A is a subset of P(P(X)). By the definition of covering:

⋃

A∈A

TA = U

We must show that there is a finite subset F of A such that:

⋃

A∈F

TA = U

To that end, let B be the subset of P(X) defined as follows:

B =
⋃

A

Obviously: ⋃

B∈B
TB =

⋃

A∈A

(
⋃

B∈A
TB) =

⋃

A∈A

TA = U

Moreover, for any B in B, there is some A in A such that B ∈ A, so that:

TB ⊆ TA

Now we need only show that there is a finite subset F of B such that:

(◦)
⋃

B∈F
TB = U
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In effect, we have reduced the context of a general covering of U by open
subsets to the context of a basic covering of U by basic open subsets.

22◦ By the finite union condition, condition (◦) is equivalent to the following
condition:

(•)
⋃

B∈F
B = X

Let us suppose that there is no finite subset F of B such that condition (•)
holds true. It would follow that the family C of complements:

C = {C = X\B : B ∈ B}

generates a filter on X . Consequently, there would be an ultrafilter U on X
which includes C. It would follow that:

U /∈
⋃

B∈B
TB

a contradiction. So the supposition is untenable. Hence, there is finite subset
F of B such that condition (•) holds true. The proof is complete.

23• Verify that, for any subsetD ofX , TD is not only open but also compact.

24◦ Third, extremely disconnected. Let A be any subset of P(X). We will
show that there is a subset B of X that:

(∗) clo(TA) = TB

In this way, we will prove that the closure of any open subset of U is itself
open, in fact, that it is a basic open subset of U.

25◦ To that end, let us introduce the following sets:

B =
⋃

A, C = X\B, B = P(B), C = P(C)

One can easily check that TC is the largest (under the relation of inclusion)
among all open subsets of U which are disjoint from TA. Consequently:

U\TC = clo(TA)
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However, TB = TB and TC = TC . It follows that:

TB = U\TC = clo(TA)

The proof is complete.

26• For each member ξ of X , we may identify ξ with the corresponding
principal ultrafilter Pξ. In this way, we obtain an injective mapping π carrying
X to U:

π(ξ) = Pξ

where ξ is any member of X . Show that the range of π is dense in U:

clo(ran(π)) = U

Show that, for each member ξ of X , π(ξ) is an isolated point in U. In fact:

{P(ξ)} = T{ξ}
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