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Introduction

01° Let II4 be the preamble for Arithmetic and let Ay = (L4,.44) be the
corresponding predicate logic. Let H 4 be a set of hypotheses adequate for the
syntactic theory of Arithmetic. In turn, let N be the set of natural numbers
and let I be the standard interpretation of Arithmetic. By definition, N is the
universe underlying I. We plan to describe the Theorems of Tarski, Godel,
and Church, bearing upon the Incompleteness of Arithmetic.

Godel Numbers

02° Let 3 be the symbol set for the various predicate logics:
(7 )a T va ¢ T, fa Ty |a <7 >

and let ¥* be the set of finite strings of symbols drawn from . Relative to
the displayed linear ordering of the twelve symbols in ¥, let us introduce the
corresponding degree-lexicographic ordering < on ¥*. For instance:

Ofr < (Veece and ——=fxe) < =—f)((

Let T" be the order isomorphism carrying ¥* to IN, defined by the base twelve
presentation of natural numbers in N, subject to the condition that the digits
shall run not from 0 to 11 but from 1 to 12. For instance:

D((z])])=1-12* +7-125+10-12% 4 12- 12" + 10 - 12° = 34426

For each string « in ¥*, we refer to I'(a) as the Gddel number of .
Notation

03° Let k be a positive integer. Let o be a sentence in E’j‘. Let V, be the
set consisting of the variable symbols which occur at least once freely in «.
By definition, V,, contains k£ members. When useful, we will emphasize the
relation between a and the variable symbols in V, by writing « in functional
form:

alC,Cay oo. ) for «

The variable symbols shall appear in natural order. Moreover, for any terms
T, T2, ..., and 7, we will write:

a1, 72y oo 1) for  a(ri|C)(2]C2) -+ (Tk|Ck)



Truth
04° Let LY be the subset of £4 consisting of all sentences 3 for which:
I(vp) =1
It is the same to say that, relative to I, V3 is true. Let:
T = T(ch)
We refer to T as the truth set for the standard interpretation I of Arithmetic.
Proof
05° Let L% be the subset of £4 consisting of all sentences 3 for which:
Ha VB

Let:
P = I'(L7)

We refer to P as the proof set for the theory of Arithmetic.
Semantically Definable Sets

06° Let T be any subset of N. We say that T is semantically definable iff
there is a sentence a(¢) in £} such that, for each natural number j:

jeT = I(a()) =1
where 7 is the constant term corresponding to j.

07° Let W be any subset of N x N. We say that W is semantically definable
iff there is a sentence §(n,0) in £2% such that, for all ordered pairs (k,¢) of
natural numbers:

(k,0) €W < 16k 0) =1

Syntactically Definable Sets

08° Let T be any subset of N. We say that T is syntactically definable iff
there is a sentence a(¢) in £} such that, for each natural number j:

(1) jeT = Hal- )
2) j¢T = HalF—a())



09° Let W be any subset of N x N. We say that W is syntactically definable
iff there is a sentence 6(n, ) in £% such that, for any ordered pair (k,£) of
natural numbers:

(1) (k,O)eW = Hal (k1)
2) (kO ¢W = Ha |- —6(k,0)

It may happen that W is the graph of a mapping D carrying N to N. In
such a case, we claim that W is syntactically definable iff there is a sentence
§(n,0) in L£3 such that, for any natural number k:

(3) Ha |- (V0)(5(k,0) «— (D(k) = 0))
For the proof of the claim, see article 30°.
A Basic Implication

10° By the Soundness Theorem, it is plain that Syntactically Definable sets
are Semantically Definable.

The Diagonalization Theorem

11° For each sentence a(¢) in LY, let a = I'(a) and let & = a(a). Let A° be
the mapping carrying ¥* to itself, defined as follows:

orn_ Je ifag¢ly
A(a)_{& if a € LY

We refer to A° as the Diagonalization Mapping. Let D° be the corresponding
mapping carrying N to IN, defined by conjugation of A° by I" as follows:

D°=T-A°.-T7!

Let W*° be the graph of D°, a subset of N x N. We contend that D° is
recursive. We refer to this basic fact as the Diagonalization Theorem. It
follows, in turn, that W*° is decidable.

12° To prove our contention, we introduce the recursive mappings \ carrying
N to N and p carrying N x N to N such that, for each m in N, if m # 0
then:

m= Zp(m, k)12F (L =Xm), 1< p(m, k) <12)

J4
k=0

In this way, we set the base for computing I'"!. Then, by relentless analysis,
one may proceed to prove that D° is recursive. See article 31°.
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13° To show that W° is decidable, we display the characteristic mapping for
we:
lwo(k, ) =16 | — D°(k)]

where k and ¢ are any natural numbers. Clearly, 1yyo is recursive.
The Representation Theorem

14° Let T be any subset of N. We contend that if T" is decidable then T is
syntactically definable. In turn, let W be any subset of N x N. We contend
that if W is decidable then W is syntactically definable. We refer to these
fundamental facts as the Representation Theorem. For the proofs of these
contentions, see article 32°.

The Fixed Point Theorem

15° Let «(¢) be any sentence in LY. We contend that there is a sentence 3
in £Y such that:

where b = T'(3). We refer to this basic fact as the strong (syntactic) form of
the Fixed Point Theorem.

16° Let us prove the contention. By conjoining the Diagonalization Theorem
and the Representation Theorem, we may introduce a sentence 6°(n,6) in £%
such that 6°(n, 8) syntactically defines W°. We mean to say that condition
(3) in article 09° is valid for the mapping D° carrying N to N. Without loss
of generality, we may assume that ¢ # 1 and ¢ # 6. Let v(n) be the sentence
in £} defined as follows:

v(n) = (V0)(6°(n, 0) — (0))
Let ¢ =T'(7). Let 3 be the sentence in £Y defined as follows:
B =A%) =7=(¢) = (¥0)(6°(c,0) — a(f))
Let b = I'(3). By definition, D°(c) = b. By condition (3):
Ha |- (V0)(8°(¢,0) «— (b=10))

By elementary steps, we complete the proof:
Ha |- ((v0 ) — a(f)) «— (V0)(6°(c,0) — «(9)))
0 _

)(
Ha | ((VO)((b=0) — a(0)) «— a(b)
Ha | (8 +— a(d))

b
b



17° Let «(¢) be any sentence in LY. We contend that there is a sentence 3
in £9 such that: -
I8) =1 <= I(a(d)) =1

where b = I'(8). We refer to this basic fact as the weak (semantic) form of
the Fixed Point Theorem.

18° To prove the contention, we need only review the foregoing argument.
Of course, §°(n,0) semantically defines W°. By straightforward inspection,

we find that, relative to I, § is true iff «a(b) is true.
Tarski

19° We contend that the truth set T for the standard interpretation of Arith-
metic is not semantically definable. This assertion is the substance of the
Theorem of Tarski. To prove the contention, we argue by contradiction. Let
us suppose that there is a sentence a(¢) in £ which semantically defines T.
By the weak (semantic) form of the Fixed Point Theorem, we may introduce
a sentence 3 in LY such that 3 is true iff (=)(b) is true iff a(b) is false, where
b=T(5). Hence:
beT < b¢T

By this contradiction, we infer that T is not semantically definable.
The Deduction Theorem

20° Let D4 be the subset of ¥* consisting of all strings A which are identifiable
with proper deductions from H 4. For each proper deduction A in D4, let §y
be the consequence of A, a sentence in L4. Let A® be the mapping carrying
¥* to itself, defined as follows:

° o € 1f/\¢DA
A()\)_{5A if A€ Dy

We refer to A® as the Deduction Mapping. Let D® be the corresponding
mapping carrying N to itself, defined by conjugation of A®* by I" as follows:

D*=T.A".T"!
Let W* be the graph of D®, a subset of N x N. We contend that D® is
recursive. We refer to this basic fact as the Deduction Theorem. It follows,

in turn, that W* is decidable.

21° For the proof of this contention, see article 33°. To show that W* is
decidable, one need only review article 13°.



Godel

22° Let P be the proof set for the theory of Arithmetic and let T be the
truth set for the standard interpretation of Arithmetic. See articles 04° and
05°. We contend that:

T\P #

We may say that there exist sentences which are true, relative to the standard
interpretation of Arithmetic, but not provable. This fundamental fact is the
substance of the Incompleteness Theorem of Gdodel.

23° By conjoining the Representation Theorem and the Deduction Theorem,
we may introduce a sentence 6°(n,0) in £% which semantically defines the
graph W* of D®. Let « be the sentence in £} defined as follows:

v(0) = (Fn)d*(n,0)

We claim that v semantically defines P U {0}.

24° Obviously, P U {0} = ran(D*). To prove the claim, we argue as follows.
Let £ be any natural number in N. Of course, y(¢) = (3n)§*(n,£). Clearly,
~v(€) is true iff there is some natural number & in N such that §°(k, ) is true.

Moreover, §*(k, {) is true iff D*(k) = £. Hence, y(¢) is true iff £ € ran(D*).

25° Now let us prove our contention. By the weak (semantic) form of the
Fixed Point Theorem, we may introduce a sentence 3 in £9 such that 3 is

true iff (—y)(b) is true iff y(b) is false, where b = I'(3). Hence:
beT < b¢PU{O}

Of course, b # 0. If b were not a member of T then, by the Soundness
Theorem, b would not be a member of P. By the foregoing equivalence, we
infer that b € T\ P.

Syntax versus Semantics

26° It seems interesting that the proofs of the Theorems of Tarski and Godel
depend not upon the strong (syntactic) form of the Fixed Point Theorem but
upon the weak (semantic) form. However, the Theorem of Church, soon to
follow, requires the full strength of the theorem.

Church
27° Let P be the proof set for the theory of Arithmetic. See article 05°. We

contend that P is enumerable but that P is not decidable. One refers to these
fundamental facts as the Theorem of Church.



28° For the first contention, we argue as follows. By the Deduction Theorem,
the mapping D® is recursive. It follows that the range of D*® is enumerable.
Of course, the range of D® is P U {0}. Consequently:

P = (PU{0})\{0}
is enumerable.

29° For the second contention, we argue by contradiction. Let us suppose
that P is decidable. Let Q = N\P. Of course, Q would be decidable. By the
Representation Theorem, there would be a sentence «(¢) in £} such that «
syntactically defines Q. That is, for each natural number k:

(1) keQ= Hal- ak)
(2) k¢ Q= Hal-—alk)

By the strong (syntactic) form of the Fixed Point Theorem, we may introduce
a sentence (3 in £9 such that:

Ha | (8 a(d))

where b = T'(3). Now we would find that:

be Q= Ha |- a(b)
= Ha |- 8
—beP
= b¢ Q
= Ha |- —a(b)
= Ha |8
:>HA HLﬂ
=0b0¢P
= beQ

a bald contradiction. Consequently, P is not decidable.
Basic Support

30° In context of article 09°, we claim that there is a sentence §(n,6) in £%
such that, for any ordered pair (k, ¢) of natural numbers:

(1) (k,O)eW = Hal- 6,0
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iff there is a sentence 6(n, #) in £ such that, for any natural number k:

(3) Ha |- (v0)(3(k,0) +— (D(k) = 0))

To prove the claim, we note that if condition (3) holds for ¢ then conditions
(1) and (2) hold for ¢ as well. In turn, we contend that if conditions (1) and
(2) hold for § then condition (3) holds for §, defined as follows:

(+)  0m.0) =0(n0) A ((VO((C<0) — (3(n.0) — ((=0))))
Let us prove the contention.

31* Let us prove the Diagonalization Theorem.

32® Let us prove the Representation Theorem.

33* Let us prove the Deduction Theorem.

Addendum

These are the saddest of possible words:

Tinker to Evers to Chance.

Trio of bear cubs, and fleeter than birds,
Tinker and Evers and Chance.

Ruthlessly pricking our gonfalon bubble,
Making a Giant hit into a double

Words that are heavy with nothing but trouble:
Tinker to Evers to Chance.

Franklin Pierce Adams (1910)



