CUTS

Thomas Wieting, 2012

Rational Numbers: Q⁺

 01° Let us begin with the set \mathbf{Q}^+ consisting of all positive rational numbers, supplied as usual with the operations of addition and multiplication and the relation of order:

+, ×, <

For any numbers x and y in \mathbf{Q}^+ , we write:

$$x + y, x \times y = xy, x < y$$

In terms of these expressions, we may describe the familiar properties of arithmetic and order, such as:

$$x(y+z) = xy + xz, \ x < y, y < z \Longrightarrow x < z$$

where x, y, and y are any numbers in \mathbf{Q}^+ .

 02° We plan to describe the set \mathbf{R}^+ consisting of all positive real numbers, together with operations of addition and multiplication and a relation of order. It proves to be an *extension* of \mathbf{Q}^+ , of immense significance in mathematical studies. To produce \mathbf{R}^+ , we follow the method of *cuts*, introduced by R. Dedekind in the late Nineteenth Century. The merit of the method lies in its conceptual simplicity.

Cuts in Q^+

 03° Let (A, B) be an ordered pair of subsets of \mathbf{Q}^+ . We say that (A, B) is a *cut* in \mathbf{Q}^+ iff:

- (1) $A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$, and $A \cup B = \mathbf{Q}^+$
- (2) for any numbers x and y in \mathbf{Q}^+ , if $x \in A$ and $y \in B$ then x < y

We denote such a cut by $A \vee B$, or simply by C. Clearly:

- (3) if x < y and if $y \in A$ then $x \in A$
- (4) if x < y and if $x \in B$ then $y \in B$

04° Let C_1 and C_2 be cuts in \mathbf{Q}^+ :

$$C_1 = A_1 \lor B_1, \ C_2 = A_2 \lor B_2$$

Let $A_1 + A_2$ and $A_1 \times A_2 = A_1 A_2$ be the subsets of \mathbf{Q}^+ consisting of all numbers of the form:

$$x_1 + x_2, \ x_1 \times x_2 = x_1 x_2$$

respectively, where x_1 and x_2 are any numbers in A_1 and A_2 , respectively. Let A' and A'' stand for $A_1 + A_2$ and $A_1 \times A_2 = A_1A_2$, respectively, and let B' and B'' stand for the complements of A' and A'', respectively, in \mathbf{Q}^+ .

05• Show that the ordered pairs (A', B') and (A'', B'') are cuts in \mathbf{Q}^+ :

$$C' = A' \lor B', \ C'' = A'' \lor B''$$

In this way, justify the following definitions of addition and multiplication of cuts in \mathbf{Q}^+ :

(a/m)
$$C_1 + C_2 = (A_1 + A_2) \lor (\mathbf{Q}^+ \setminus (A_1 + A_2)) \\ C_1 \times C_2 = (A_1 \times A_2) \lor (\mathbf{Q}^+ \setminus (A_1 \times A_2))$$

 $06^{\bullet}\,$ Prove the commutative, associative, and distributive properties for the foregoing operations.

07[•] Supply the cuts in \mathbf{Q}^+ with a relation of order, as follows:

$$(o) C_1 < C_2 \iff A_1 \subseteq A_2, A_1 \neq A_2$$

Verify that this relation is a linear order relation.

Real Numbers: R⁺

 08° Now let \mathbf{R}^+ be the set of all cuts in \mathbf{Q}^+ . We refer to the members of \mathbf{R}^+ as positive real numbers. The foregoing exercises provide \mathbf{R}^+ with operations of addition and multiplication and with a relation of order:

$$+, \times, <$$

09° Show that the familiar relations among the operations + and \times and the relation < hold true. For instance, show that:

$$C_1 < C_2 \Longrightarrow C \times C_1 < C \times C_2$$

where C, C_1 , and C_2 are any cuts in \mathbf{Q}^+ .

10° Let x be any number in \mathbf{Q}^+ and let X be the cut in \mathbf{Q}^+ defined as follows:

(r)
$$X = \{y \in \mathbf{Q}^+ : y \le x\} \lor \{y \in \mathbf{Q}^+ : x < y\}$$

We refer to X as a *rational* cut, the cut in \mathbf{Q}^+ defined by the rational number x. Introduce the mapping ρ carrying \mathbf{Q}^+ to \mathbf{R}^+ , as follows:

$$\rho(x) = X$$

where x is any number in \mathbf{Q}^+ . Show that ρ is injective and that it preserves addition, multiplication, and order.

11° One may say \mathbf{R}^+ is an *extension* of \mathbf{Q}^+ .

12• Show that the range of ρ is *dense* in \mathbb{R}^+ , which is to say that, for any numbers C_1 and C_2 in \mathbb{R}^+ , if $C_1 < C_2$ then there is a number x in \mathbb{Q}^+ such that:

 $C_1 < X < C_2$

where $X = \rho(x)$. Show that the range of ρ is *unbounded* in \mathbf{R}^+ , which is to say that, for each number C in \mathbf{R}^+ , there is a number x in \mathbf{Q}^+ such that:

C < X

13° Show that the range of ρ in \mathbb{R}^+ does not equal \mathbb{R}^+ . To that end, introduce the cut:

(j)
$$J = \{x \in \mathbf{Q}^+ : x^2 < 2\} \lor \{x \in \mathbf{Q}^+ : 2 < x^2\}$$

in \mathbf{Q}^+ . Verify that J is not a rational cut, that is, that J is not in the range of ρ .

Completeness

14° At this point, we gather the fruit of our labors.

15° Let $\mathbf{C} = (\mathbf{A}, \mathbf{B})$ be an ordered pair of nonempty subsets of \mathbf{R}^+ . Following the pattern described in \mathbf{Q}^+ , we say that \mathbf{C} is a *cut* in \mathbf{R}^+ iff the sets \mathbf{A} and \mathbf{B} form a partition of \mathbf{R}^+ and, for any numbers C and D in \mathbf{R}^+ , if $C \in \mathbf{A}$ and $D \in \mathbf{B}$, then C < D. We contend that there is a number E in \mathbf{R}^+ which defines \mathbf{C} , in the sense that E is the largest number in \mathbf{A} or E is the smallest number in \mathbf{B} . Just as well, one may say that E is the *supremum* of \mathbf{A} and the *infimum* of \mathbf{B} . $16^\circ~$ One refers to the theorem just stated as the Completeness Theorem for ${\bf R}^+.$

17° In practice, one encounters the theorem in the following form. Let **S** be any subset of \mathbf{R}^+ . Let \mathbf{S}^* be the subset of \mathbf{R}^+ consisting of all upper bounds for **S**. That is, for any number D in \mathbf{R}^+ , $D \in \mathbf{S}^*$ iff, for each number C in $\mathbf{S}, C \leq D$. Let **B** stand for \mathbf{S}^* and let **A** be the complement of **B** in \mathbf{R}^+ : $\mathbf{A} = \mathbf{R}^+ \setminus \mathbf{B}$. Clearly, if $\mathbf{S} \neq \emptyset$ and if $\mathbf{S}^* \neq \emptyset$ then (\mathbf{A}, \mathbf{B}) is a cut in \mathbf{R}^+ . By the Completeness Theorem, we may introduce the number E in \mathbf{R}^+ , namely, the supremum of **A** and the infimum of **B**. Obviously, $E \in \mathbf{B}$, so that E is the smallest upper bound (that is, the supremum) of **S**. It may or may not be in **S** itself.

18° Prove the Completeness Theorem. To that end, introduce the ordered pair (\bar{A}, \bar{B}) of subsets of \mathbf{Q}^+ , where:

$$\bar{A} = \bigcup \mathbf{A}, \ \bar{B} = \bigcap \mathbf{B} = \mathbf{Q}^+ \setminus \bar{A}$$

Show that $(\overline{A}, \overline{B})$ is a cut in \mathbf{Q}^+ :

$$E = \bar{A} \vee \bar{B}$$

Show that E is the supremum of \mathbf{A} and the infimum of \mathbf{B} .

19° One should take a moment to consider whether the foregoing argument, yielding by so little effort so significant a consequence, might violate the Protestant Ethic.