CUTS

Thomas Wieting, 2012

Rational Numbers: \mathbf{Q}^{+}

01° Let us begin with the set \mathbf{Q}^{+}consisting of all positive rational numbers, supplied as usual with the operations of addition and multiplication and the relation of order:

$$
+, \times,<
$$

For any numbers x and y in \mathbf{Q}^{+}, we write:

$$
x+y, x \times y=x y, x<y
$$

In terms of these expressions, we may describe the familiar properties of arithmetic and order, such as:

$$
x(y+z)=x y+x z, \quad x<y, y<z \Longrightarrow x<z
$$

where x, y, and y are any numbers in \mathbf{Q}^{+}.
02° We plan to describe the set \mathbf{R}^{+}consisting of all positive real numbers, together with operations of addition and multiplication and a relation of order. It proves to be an extension of \mathbf{Q}^{+}, of immense significance in mathematical studies. To produce \mathbf{R}^{+}, we follow the method of cuts, introduced by R. Dedekind in the late Nineteenth Century. The merit of the method lies in its conceptual simplicity.

Cuts in \mathbf{Q}^{+}

03° Let (A, B) be an ordered pair of subsets of \mathbf{Q}^{+}. We say that (A, B) is a cut in \mathbf{Q}^{+}iff:
(1) $A \neq \emptyset, B \neq \emptyset, A \cap B=\emptyset$, and $A \cup B=\mathbf{Q}^{+}$
(2) for any numbers x and y in \mathbf{Q}^{+}, if $x \in A$ and $y \in B$ then $x<y$

We denote such a cut by $A \vee B$, or simply by C. Clearly:
(3) if $x<y$ and if $y \in A$ then $x \in A$
(4) if $x<y$ and if $x \in B$ then $y \in B$
04° Let C_{1} and C_{2} be cuts in \mathbf{Q}^{+}:

$$
C_{1}=A_{1} \vee B_{1}, \quad C_{2}=A_{2} \vee B_{2}
$$

Let $A_{1}+A_{2}$ and $A_{1} \times A_{2}=A_{1} A_{2}$ be the subsets of \mathbf{Q}^{+}consisting of all numbers of the form:

$$
x_{1}+x_{2}, \quad x_{1} \times x_{2}=x_{1} x_{2}
$$

respectively, where x_{1} and x_{2} are any numbers in A_{1} and A_{2}, respectively. Let A^{\prime} and $A^{\prime \prime}$ stand for $A_{1}+A_{2}$ and $A_{1} \times A_{2}=A_{1} A_{2}$, respectively, and let B^{\prime} and $B^{\prime \prime}$ stand for the complements of A^{\prime} and $A^{\prime \prime}$, respectively, in \mathbf{Q}^{+}.
05^{\bullet} Show that the ordered pairs $\left(A^{\prime}, B^{\prime}\right)$ and $\left(A^{\prime \prime}, B^{\prime \prime}\right)$ are cuts in \mathbf{Q}^{+}:

$$
C^{\prime}=A^{\prime} \vee B^{\prime}, \quad C^{\prime \prime}=A^{\prime \prime} \vee B^{\prime \prime}
$$

In this way, justify the following definitions of addition and multiplication of cuts in \mathbf{Q}^{+}:
(a / m)

$$
\begin{aligned}
& C_{1}+C_{2}=\left(A_{1}+A_{2}\right) \vee\left(\mathbf{Q}^{+} \backslash\left(A_{1}+A_{2}\right)\right) \\
& C_{1} \times C_{2}=\left(A_{1} \times A_{2}\right) \vee\left(\mathbf{Q}^{+} \backslash\left(A_{1} \times A_{2}\right)\right)
\end{aligned}
$$

$06{ }^{\bullet}$ Prove the commutative, associative, and distributive properties for the foregoing operations.
07^{\bullet} Supply the cuts in \mathbf{Q}^{+}with a relation of order, as follows:

$$
\begin{equation*}
C_{1}<C_{2} \Longleftrightarrow A_{1} \subseteq A_{2}, A_{1} \neq A_{2} \tag{o}
\end{equation*}
$$

Verify that this relation is a linear order relation.

Real Numbers: \mathbf{R}^{+}

08° Now let \mathbf{R}^{+}be the set of all cuts in \mathbf{Q}^{+}. We refer to the members of \mathbf{R}^{+} as positive real numbers. The foregoing exercises provide \mathbf{R}^{+}with operations of addition and multiplication and with a relation of order:

$$
+, \times,<
$$

09^{\bullet} Show that the familiar relations among the operations + and \times and the relation < hold true. For instance, show that:

$$
C_{1}<C_{2} \Longrightarrow C \times C_{1}<C \times C_{2}
$$

where C, C_{1}, and C_{2} are any cuts in \mathbf{Q}^{+}.
10^{\bullet} Let x be any number in \mathbf{Q}^{+}and let X be the cut in \mathbf{Q}^{+}defined as follows:

$$
\begin{equation*}
X=\left\{y \in \mathbf{Q}^{+}: y \leq x\right\} \vee\left\{y \in \mathbf{Q}^{+}: x<y\right\} \tag{r}
\end{equation*}
$$

We refer to X as a rational cut, the cut in \mathbf{Q}^{+}defined by the rational number x. Introduce the mapping ρ carrying \mathbf{Q}^{+}to \mathbf{R}^{+}, as follows:

$$
\rho(x)=X
$$

where x is any number in \mathbf{Q}^{+}. Show that ρ is injective and that it preserves addition, multiplication, and order.
11° One may say \mathbf{R}^{+}is an extension of \mathbf{Q}^{+}.
12• Show that the range of ρ is dense in \mathbf{R}^{+}, which is to say that, for any numbers C_{1} and C_{2} in \mathbf{R}^{+}, if $C_{1}<C_{2}$ then there is a number x in \mathbf{Q}^{+}such that:

$$
C_{1}<X<C_{2}
$$

where $X=\rho(x)$. Show that the range of ρ is unbounded in \mathbf{R}^{+}, which is to say that, for each number C in \mathbf{R}^{+}, there is a number x in \mathbf{Q}^{+}such that:

$$
C<X
$$

13^{\bullet} Show that the range of ρ in \mathbf{R}^{+}does not equal \mathbf{R}^{+}. To that end, introduce the cut:

$$
\begin{equation*}
J=\left\{x \in \mathbf{Q}^{+}: x^{2}<2\right\} \vee\left\{x \in \mathbf{Q}^{+}: 2<x^{2}\right\} \tag{j}
\end{equation*}
$$

in \mathbf{Q}^{+}. Verify that J is not a rational cut, that is, that J is not in the range of ρ.

Completeness

14° At this point, we gather the fruit of our labors.
15° Let $\mathbf{C}=(\mathbf{A}, \mathbf{B})$ be an ordered pair of nonempty subsets of \mathbf{R}^{+}. Following the pattern described in \mathbf{Q}^{+}, we say that \mathbf{C} is a cut in \mathbf{R}^{+}iff the sets \mathbf{A} and \mathbf{B} form a partition of \mathbf{R}^{+}and, for any numbers C and D in \mathbf{R}^{+}, if $C \in \mathbf{A}$ and $D \in \mathbf{B}$, then $C<D$. We contend that there is a number E in \mathbf{R}^{+}which defines \mathbf{C}, in the sense that E is the largest number in \mathbf{A} or E is the smallest number in \mathbf{B}. Just as well, one may say that E is the supremum of \mathbf{A} and the infimum of \mathbf{B}.
16° One refers to the theorem just stated as the Completeness Theorem for \mathbf{R}^{+}.
17° In practice, one encounters the theorem in the following form. Let \mathbf{S} be any subset of \mathbf{R}^{+}. Let \mathbf{S}^{*} be the subset of \mathbf{R}^{+}consisting of all upper bounds for \mathbf{S}. That is, for any number D in $\mathbf{R}^{+}, D \in \mathbf{S}^{*}$ iff, for each number C in $\mathbf{S}, C \leq D$. Let \mathbf{B} stand for \mathbf{S}^{*} and let \mathbf{A} be the complement of \mathbf{B} in \mathbf{R}^{+}: $\mathbf{A}=\mathbf{R}^{+} \backslash \mathbf{B}$. Clearly, if $\mathbf{S} \neq \emptyset$ and if $\mathbf{S}^{*} \neq \emptyset$ then (\mathbf{A}, \mathbf{B}) is a cut in \mathbf{R}^{+}. By the Completeness Theorem, we may introduce the number E in \mathbf{R}^{+}, namely, the supremum of \mathbf{A} and the infimum of \mathbf{B}. Obviously, $E \in \mathbf{B}$, so that E is the smallest upper bound (that is, the supremum) of \mathbf{S}. It may or may not be in \mathbf{S} itself.
18^{\bullet} Prove the Completeness Theorem. To that end, introduce the ordered pair (\bar{A}, \bar{B}) of subsets of \mathbf{Q}^{+}, where:

$$
\bar{A}=\bigcup \mathbf{A}, \quad \bar{B}=\bigcap \mathbf{B}=\mathbf{Q}^{+} \backslash \bar{A}
$$

Show that (\bar{A}, \bar{B}) is a cut in \mathbf{Q}^{+}:

$$
E=\bar{A} \vee \bar{B}
$$

Show that E is the supremum of \mathbf{A} and the infimum of \mathbf{B}.
19° One should take a moment to consider whether the foregoing argument, yielding by so little effort so significant a consequence, might violate the Protestant Ethic.

