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APPENDIX A
POWERS-OF-TEN NOTATION

Large numbers crop up as soon as
you talk quantitatively about light
waves; the largest frequency we will
mention will be a hundred billion
billion times as large as the small-
est, and the smallest wavelength
will be about one ten-thousandth of
a billionth of an inch. We would like
to find a way to avold these rather
cumbersome forms of numbers.

An extremely useful and fairly
simple shorthand for dealing with
numbers that span a large range Is
the powers-of-ten notation. In-
stead of writing:

one hundred billion billion
= 100,000,000,000,000,000,000
{20 zeros)

we write:

10%° (which means, a 1 followed by
20 zeros)

How do we get this? It is just a fa-
miliar rule of raising a number to a
power. For example, consider:

one thousand = 1000 = 10°

according to the notation we just
tntroduced. By the usual rule of
what an exponent means, 10° is the
“cube of ten,” which gives the same
result:

10° = 10 x 10 % 10 = 1000

So 10 ralsed to any power is 10
multiplied by itself that many
times, which is 1 with that many
zeros after it.

What about 1 itself—that is, a 1
with no zeros after it? In our nota-
tion we must write this as:

I =10°

How about small numbers, say
0.1? Instead of multiplying 1 by
powers of 10, this requires dividing
1 by powers of 10. The number of
10's we divide by will be indicated
by negative powers, for example
onetenth = 0.1 = 4 = 10"
or:

one ten thousandth of a billionth
= 1/10,000,000.000,000
= 10 "* (count the zeros!).
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In addition to brevity, this nota-
tion has another advantage: multi-
plication and division of such “pow-
ers-of-ten” numbers is easy—you
need only add or subtract the expo-
nents. For example, 10" x 10? is
13 tens times 4 tens all multiplied
together, so the product is (13 + 4)
tens, 17 tens, or 10':

103 X 104 - 10[3 + 4 1017
Similarly 102 x 10 'is

1 1 1
e = e ——————————
10 x 10~ 10 (10 x 10) x 10
or:

1073 x 107 V= 1072 =0 = 1072

Thus multiplication becomes sim-
ple addition. Division is just as easy
when we note, for example 1/10"* =
10" 'Y, so dividing by 10 to a power
is the same as mulitiplying by 10 to
the negative power. Thus,

104

= = 10" x 107" =

0
10 10

= 1 (of course)

A VaVataVaVass
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APPENDIX B

THE MATHEMATICAL
FORM OF SNELL'S LAW
——

To state the mathematical form of
Snell's law, we shall first need the
trigonometric function called the
sine of an angle 0, written as sin 6.
To do this, we construct a right tri-
angle with one angle equal to 6 (Fig.
B.1a). Then sin 8 is equal to the
length of the side opposite 0, di-
vided by the length of the hypoten-
use:

sin 6 =

i~

(B1)

For any value of the angle 8, this
function can be found in tables or
calculators.

Now. consider a beam of light in-
cident on a boundary at angle 6,, in
material of index of refraction n,,
and then transmitted at angle 8,, in
material of index of refraction n,
{Fig. B.1b). We have drawn the
wavefront AA’, which is perpendic-
ular to the incident beam. Hence
(since the surface AB’ is perpendic-
ular to its own normal) the angle
<A’AB’ must equal 6,. Then:

A'B’
sin 8, = W
or;
L = sin @ (B2)
AB' AF '

Drawing the wavefront BB', perpen-
dicular to the transmitted beam,

416

and going through the same steps,
gives us:

(B3)

Comparing Equations B2 and B3
glves us:
K’IF’ sin 6, = T{Ll; sin 6,
Suppose that it took light a time
T to travel between the two wave
fronts, that is, from A’ to B’ for the
part still on the incident side, and
from A to B for the part on the
transmitted side. If the light travels
on the incident side with speed
v, = ¢/n, and on the transmitted
side with speed v, = c¢/n,, then we
have:

(B4)

T

AB =T = c_' and
n
oty T
AB = vT = =
n,

Putting these results in Equation
B4 gives us:

ny n,
—sin 6, = — sin &
oT o= 8RB
or, Snell's law:

n sin 0‘ =n; sin 0. (B5)

FIGURE B.1

(a) Right triangle with one angle equal to
8. {b) Light incident from a fast medium
to a slow medium (n; < n,} at angle ;.
The refracted beam bends toward the
normal; that is, 8 < 8. Two wavefronts,
AA’ and BB' are shown.

(a) {b)

a1,

If we refer back to Figure B.1a, we
notice that p can never be larger
than r—the hypotenuse is always
the largest side. Hence, from Equa-
tion B1. sin 0 can never be greater
than 1. When sin 6, equals 1, we
have the condition of total internal
reflection. That is, the incident an-
gle is then the critical angle 8.,

where (from Eq. B5, setting
sin @, = 1):
n; sin 6, = n, (B6)

Any incident angle greater than 6,
will result in a totally internally re-
flected light beam. There is then no
transmitted beam—Equation BS5
cannot be satisfied. Since sin 6.
must also be less than 1, we can
only satisfy Equation B6 If n, is
greater than n,. That is, only when
going from a slower medium {say
glass) toward a faster medium (say
alr) can light be totally internally re-
flected.

APPENDIX C

THE FOCAL POINT
OF A CONVEX MIRROR
—

To prove the relation given in Sec-
tlon 3.3A, that the focal length is
one half the radius of a spherical
convex mirror: f = OF = § OC, con-
sider Figure C.1. An incident ray,

~o 6’
. 9'7\ A_ ________ B8
T \\[01
\ ~
\/\\‘N
X# 6~
- 5 > e
0 F (5
= —a]
FIGURE C.1

Ray 17, traveling parallel to the axis,
strikes a convex mitror at A, and leaves
as if it had come from the focal point, F.



APPENDIX D THE MIRROR EQUATION

ray 1, traveling parallel to the axis,
strikes the mirror at A, with angle
of incidence 8, It is reflected with
angle of reflection 8, as shown.
Since AB is a continuation of the
incident ray, and AC is the normal
at A, the angle XCAB is equal to 8,.
The angle <ACF must then also be
equal to 8, because it and <CAB
are opposite interior angles between
two parallel lines. Similarly, AF is a
continuation of the reflected ray, so
the angle <CAF must equal 8,
which by the law of reflection is
equal to 6., Hence the triangle
ACAF is an isosceles triangle, hav-
ing two equal angles (LCAF and
SACF), and therefore two equal
sides

AF = FC
Now, for paraxial rays, the point A

must be close to the point O, so
AF = OF. Hence, we can write:

OF = FC (paraxial rays)

But since OC = OF + FC, we have,
finally:

OF = 4 OC

That is, the focal length of the
spherical mirror is half its radius,

FIGURE D.1

Object PQ of size s, emits ray 7 paratlel
to the axis and ray 3 through the focal
point, F. The (inverted) image P'Q' has
5ize ~S§;.
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APPENDIX D

THE MIRROR EQUATION
— B

To derive the mirror equation, we
redraw Figure 3.17, showing only
rays 1 and 3, but extending ray 1
backward (Fig. D.1). We then note
pairs of similar triangles (treating
AOB as a straight line): AABQ and
ACFQ@, also ACFA and ADQ'A.
From the first pair of similar trian-
gles, we may write the equal ratios:

CF

&

o
[z

We note that CF = s,, the object
size; AB = s, — s,, where —s, Is the
image size (the minus sign indi-
cates that the image points down-
ward); QA = x,. the distance of the
object in front of the mirror; and
QC = x, — (—f) = x, + ., where
is the focal length of the mirror and
is negative for this concave mirror.
Hence the above equation reads:

So _ _Xo + S
So - S| X5
s

1+ =
s

1

(D1)

The second pair of similar triangles
gives:

CF _CA
DG DA
But CF = s, D@ = s, - S,

CA = ~f, and DA = x,, the distance
of the image in front of the mirror.
So this equation reads:

_S _ =S

(D2)
S, — 5( X|

Since the left-hand sides of Equa-
tions D1 and D2 are the same, their
right-hand sides must be equal:

~==1+= or
Xy Xy Xo X

Dividing both sides of the latter
form of the equation by f then gives:

-=-=== ®3)

This is the mirror equation, derived
here for the case of the concave
mirror, where f is negative. It also
is valid for convex mirrors: you just
put in a positive f. If you should
find x, to be negative, it simply
means that the image is that dis-
tance behind the mirror (a virtual
image).

Equation D3 locates the image;
what about the size of the image? If
we write Equation D2 upside down,
we get:

X _ S oS _,_%
S So S,
or:
5 Xy
=1+= (D4)
S, J

Hence, if we know the location of
the image x;, then Equation D4 tells
us its size s, We can simplify this
by using the mirror equation,
Equation D3. Multiplying it by x,
glves:

x; X
=21 +<
X, f
Using this in Equation D4 gives:
S
2. F DS)
So Xo

This equation tells us how big the
image is, compared to the object—
how much it is magnified. The mi-
nus sign tells us that if x; and x, are
both positive (in front of the mirror,
as in Fig. D.1), then s; will have the
opposite sign to s,—it will be in-
verted, as in Figure D.1.

Thus, Equations D3 and D4 tell
us the size, position, and orienta-
tion of the tmage.

A VAVASAVAVASE
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APPENDIX E

THE LENS EQUATION
— B

To derive the lens equation, we re-
draw Figure 3.26, showing only
rays 1 and 3, and use the technique
of Appendix D (Fig. E.1). The palrs
of similar triangles here are AABQ
and ACFQ. as well as AABQ' and
AAOF'. The first pair gives:

CF _ QC
AB QA
Here CF = s, the object size:

AB = s, — s, where —s, is the im-
age size (again, it has a minus sign
because the image points down-
ward); QA = x,, the distance of the
object In front of the lens; and
@C = x, — f, where f is the focal
length of the lens. Hence the above
equation reads:

Sy Xo -.f f

=L =) -=,

(E1)
So v~ S. xo xo

The second pair of similar triangles
glves:

AO = s, AB = s, — s,
OF = f, and BQ' = x,, the distance
of the image past the lens. So this
equation reads:

== (E2)

FIGUREE.1

Obiject PQ of size s, emits ray 7 parallel
to the axis and ray 3 through the focal
point, F. The (inverted) image P'Q’ has
size —s;.
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Comparing Equations El and E2,

we get:
i=1—L. or L+l=1

Xy Xo Xo Xy
Dividing both sides of the latter
form of the equation by f then gives:

1 1 1

x x f
This is the lens equation, derived
here for a converging lens, where f
is positive. It also is valid for di-
verging lenses; you just put in a
negative f. If you should find x, to
be negative, it simply means that
the image is in front of the lens (a
virtual image).

Equation E3 locates the image;
what about the size of the image?
As in Appendix D, we write Equa-
tion E2 upside down:

(E3)

X _S=S_ ., _ &

J So So

or:

S X

2=1-= E4
So S .-
Multiplying Equation E3 by x; gives:
X X X X
i ]| wspe=lo Or 1, STl et
Xo J J X,
which, combined with Equation
E4, gives:

2. - ES)
S, X,

That is, as in the case of the mirror,
the magnification is just the nega-
tive of the ratio of the image and
object distances. Again, positive x,
and x, (as in Fig. E.1) means there
is a negative magnification—the
image is lnverted, as in Figure E.1.

X ‘&i

APPENDIX F

TWO THIN LENSES
TOUCHING

Consider two thin lenses with focal
lengths f, and f,. Start with them
separated by a distance t, with an
object at the first focal plane of the
first lens. Light from that object
must then emerge from the first
lens in a parallel beam (Fig. F.la).
But a parallel beam incident on the
second lens will be focused in that
lens’ second focal plane, as shown
in the figure.

This is true no matter what the
separation t is. If we let the separa-
tion vanish, so the two lenses
touch, we can think of them as one
effective lens, and the diagram
looks like Figure F.1b. But now we
know that the object distance is
X, = fi, and the image distance is
x; = fa. The lens equation for this
effective lens is (Eq. E3):

1 1 1

Xa X f

where f is the effective focal length
of the combined lens. With the
known values of the object and im-
age distances, this becomes:

1 1 1

RS
But (1/f,) = P, is the power of the
first lens; (1/f;) = P, is the power of
the second lens; and (1/f}) = P is the
power of the combined lens. So
Equation F1 becomes:

P,+P,=P (F2)

—the powers add for the two
touching lenses, as advertised.

(F1)
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cngth f2 PHOTOGRAPHIC
PERSPECTIVE
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When you look at a scene, each ob-
ject in your field of view produces
an image of a particular size on
your retina. For the perspective in a
Y photograph of the scene to appear
correct to you, the retinal image

|‘—f: —'l‘-' ‘-l‘—fz—'l sizes must be the same as when ygu

(@) viewed the scene directly. Another
way to say this is that the visual an-

Lens with focal length £ gle subtended by each image on the

photograph must be the same as
that subtended by the correspond-
ing original object. Clearly this con-
dition depends on the focal length
of the lens used for photographing
the scene, the magnification of any
resulting print, and the distance
from which you view the photo-

Lens with
focal length £,

o £ TSR | [t

Y

> graph.
Figure G.la shows a camera pho-
tographing a distant object in a
l,. ol |
f te f2 1 scene. Recall that the relation be-
(b) tween the object size, s,, and the

image size, s, depends only upon
the object distance, x,, and the im-

age distance, x,. As Equation E5
FIGUREF.1 ot
(a) Two thin lenses separated by a
distance t. {b) Two thin lenses touching S St Xi (E5)
can be thought of as one effective lens. S, X,

For distant objects, the Image lies
in the focal plane of the converging
lens being used, hence x, = f.. Here
Je is the focal length of the camera
lens. Equation E5 is then:

§, = _fc— (GI)

(a)

FIGURE G.1

(a) A camera whose lens has focal length
f photographs a distant object whose
size is 5, The object subtends an angle 0
and produces an (inverted) image of size
=5, on the film. (b) An eye (represented
by a lens) views a photographic image of
the original object. If there is no
magnification (m = 1), the eye should
view the photo from a distance of f. for
the image to subtend the same angle @ as

in (a). If the photo is enlarged by a factor
. -l m, then the eye must view it from a
I e distance mf.. This will guarantee the
{b) e Xo > proper perspective.

A VAVASAVAVASE
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Thus f. sets the scale of the sizes of
the images: all image sizes are pro-
portional to f.. Hence your telephoto
lens gives you a larger image.

Suppose you now look directly at
the developed photographic image.
Figure G.1b shows that you must
view it from a distance f. in order
that each photographic image sub-
tends the same angle as the corre-
sponding original object did: that
is, so that the perspective appears
normal. Usually you can't focus
from so close, so you must enlarge
the image.

Suppose you enlarge your photo-
graph, increasing its size by a mag-
nification factor m. As Figure G.1b
shows, you must now look at the
print from a larger viewing dis-
tance for the photographic image to
subtend the same angle and hence
the perspective to appear correct.
As the figure illustrates, the proper
viewing distance is:

x, = mf, (G2)

Note that this result is Independent
of the size and distance of the ob-
ject in the scene. That is, if you
view your print from the proper dis-
tance for one of the objects, all ob-
jects will appear the proper size and
hence the perspective will appear
correct. If you view the print from a
smaller distance, it will have tele-
photo perspective (see the TRY IT
for Sec. 4.3B); if you view it from a
larger distance, it will have wide-
angle perspective.

Let's consider some applications
of Equation G2. Suppose first you
take a 35-mm picture and blow it
upto 12 X 18 cm (a § X 7" print).
This means a magnification of
about m = 5 (since a 35-mm nega-
tive i1s 24 x 36 mm). If you wish to
view this print from 25 cm, what fo-
cal-length camera lens should you
have used so the perspective looks
correct? According to Equation G2,
correct perspective is achieved if:

and x, = 25 cm while m = 5, so
J: = 5 cm = 50 mm. Thus, for
these conditions, a 50-mm camera
lens gives correct perspective.
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Suppose instead you wish to look
at a 35-mm slide with a magnifying
glass (as in a pocket slide viewer);
what should its focal length, f,, be
for correct perspective? Since the
slide is not blown up {m = 1), and
since you will view it from x, = f,.
Equation G2 tells us that you get
proper perspective when:

Je=Jm

That is, the magnifying glass and
camera lens should have the same
focal length. (Notice that this is true
no matter what size film you use.)

Now suppose you project the 35-
mm slide on a screen a distance x,
from the projector. If the projector
lens has focal iength f,,, then the ob-
ject distance (slide to projector lens)
Is about f,. The image distance
(lens to screen) is x,,, so the magni-
fication produced (described by
Equation E5) is:

m =22

7, (G3)
{(Here we have ignored the minus
sign in Eq. E5, which tells us that
the image is inverted—that's why
you put the slide in upside down.)
If you view the projected image from
a distance x, from the screen, using
the value of m in Equation G3 tells
us that the perspective will be cor-
rect providing:

Xy = Xp' =

o P fp
This is the distance you should sit
from the screen for proper perspec-
tive. A normal 35-mm slide projec-
tor has a focal length of about f, =
100 mm. Hence if the slide was
taken with a normal f, = 50-mm
lens, you should sit at:

X
x.,=-23

halfway between the screen and the
projector.

PONDER

Suppose the original photograph was
taken with a wide-angle lens, say

fe = 25 mm. Where should you sit (if
proper perspective were the only
consideration)? Suppose it was taken
with a 200-mm telephoto lens?

APPENDIX H

A RELATIONSHIP
BETWEEN FOCAL
LENGTH AND
MAGNIFICATION

To derive the equation of the first
TRY IT for Section 4.4B, we begin
with the lens equation, Equation
E3:

X x f

Multipyling this by x, gives:
Xo " =X

1 +=== H1
xS (HD

Now, Equation E5 tells us that:

=22 (H2)

Xo Sq

where M iIs the quantity defined in
the TRY IT. (Strictly, If M is to be
the magnification, it should be the
negative of this quantity: s/s,. In
the TRY IT it was defined with the
sign of Eq. H2 because there you
would measure all distances as pos-
itive, despite the fact that the image
is inverted.) Using Equation H2 in
Equation H1, we get:

Xo _ 1 1 M+1
S0 M M
or, writing this upside down:
LM
Xo 1+ M
or, finally:
M
S=x% 1M
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APPENDIX I

LOGARITHMS
—

Ordinary scales used for graphs,
such as that shown in Figure I.1a,
have equal values between mark-
ings. In the example shown, when
you go from one marking to the
next, you add 1, no matter which
marking you started at. Such a
scale is called a linear scale. How-
ever, we have seen cases where
such a scale would be very incon-
venlent. For example, in Table 1.1,
if we had let a distance on the paper
of 1 mm represent 100 Hz, we
would have needed a piece of paper
that stretched from here to beyond
the star Sirius in order to show the
frequency range included in the ta-
ble.

We managed to include such a
tremendous range by using a scale
in which each step differed from the
previous one by a multiplicative
Jactor of 10 (Fig. 1.1b). Here the sec-
ond marking corresponds to a
number 10 times as big as the first,
the third to a number 10 times as
big as the second. and so on. We've
indicated the marking numbers in
the powers-of-ten notation, and you
see that the markings correspond
to equal steps in the power—from
10' to 107 to 10°, etc.

The logarithm is a device to dis-
play that power. The logarithm of a
number Yy, written as log y, is de-
fined as follows:

logy = x means 10" =y

Thus, the logarithm of the mark-
ings in Figure Llb would be
log 10 = 1,10g100 = 2,. . . , be-
cause 10' = 10, 10> = 100, . . . .
The markings, then, correspond to
equal steps on a logarithmic {or log)
scale.

Logarithmic scales find use in
many places where you are inter-
ested in the percentage change of
something rather than the actual
value. A common example, from the
newspaper, Is the stock market
(Fig. 1.2). It doesn’t matter whether
your stock cost $1 per share or
8100 per share; if you bought
$5000 worth of shares and their
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(b)
FIGURE L7
(a) In a linear scale, successive equal
increments correspond to the addition of FIGURE 1.2

a constant. (b) In a logarithmic scale,
successive equal increments correspond
to the multiplication by a constant.

Stock Exchange indexes plotted on a
logarithmic scale versus time, which is
plotted on a linear scale.
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value doubled. your shares would
then be worth $10,000 in either
case. On a linear scale, however, an
increase from S1 to $2 per share
would look very small compared to
an increase from $100 to $200 per
share. On a log scale, the size of the

AN
1983 D84

increase would be the same in both
cases because each increase was a
Jactor of 2. The log scale enables
you to compare how well different
stocks are doing with respect to
each other, even though their
prices may be quite different.

_/\/\/\_/\/\/\_
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APPENDIX J

TELESCOPE
MAGNIFICATION
—

A telescope (Fig. J.1) converts in-
coming parallel rays, from some ob-
ject PQ at a very large distance D, to
outgoing parallel rays at a differ-
ent, larger, angle. An eye looking
through the telescope then sees the
distant virtual image PQ" still at a
large distance, but subtending a
larger angle than the object did
without the telescope (that Is,
02 > 0,).

In the figure, we see pairs of sim-
ilar triangles: AQPO,; and AQ'P'O,,
as well as AQ"PO; and AQ'P'O,. The
first pair yields the relation:

or _ PO,
oF o.F
FIGURE |.1

A simple telescope consisting of two
converging lenses is used to view a
distant object Q. The image P'Q’ is
behind the first lens (the objective lens),
a distance equal to the lens’ focal length,
f,. The second lens (the eyepiece) is
used as a magnifying glass for viewing
the image P'Q’, and forms a virtual
image PQ" very far away.

Q
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(The minus sign indicates that
QP points in the opposite direc-
tion to that of @P.) Here PO, = D.
the large distance to the object; and
O,F" = f,. the focal length of the ob-

jective. Rewriting this equation
then gives:
e D)

P = - QP — J1)
9 T
The second pair of triangles yields:
OF _ PO;
oF " Fo;

where P'O; = .., the focal length of
the eye piece: and PO, = D + f, + f.
= D, if D is large compared to the
focal lengths f, and f.. Hence, this
equation gives:

gp =7 2

e

(J2)

The telescope magnification iIs the
ratio of the image size to the object
size: @'P/QP. We can get this by di-
viding Equation J2 by Equation J1,
which gives:

Telescope magnification = —==

‘ocooooooooonoooooooooooo.c.ooooocovoovoo

APPENDIX K

POSITIONS

OF INTERFERENCE
AND DIFFRACTION
FRINGES

——

Let's derive the locations of the in-
tensity maxima (bright fringes) and
minima (dark fringes) in the screen
patterns considered in Chapter 12.
Maxima occur at points ol con-
structive interference (waves in
phase) and minima at points of de-
structive interference (waves out of
phase). We shall assume that all the
sources are in phase. A phase dif-
ference then occurs only when the
interfering beams travel different
distances to reach a point on the
screen. Recall that the waves from
two sources are:

in phase
if their path difference € is
0. =A, =2, =3A,. . .
(K1)
out of phase
if their path difference ¢ is
+N2, £3NM2, £5M2, . .

PONDER

S

if the two sources are out of phase,
however, the out-of-phase case and the
in-phase case are interchanged in
Equation K1. That is, maxima become
minima and vice versa. Why?

1. Two Sources. The path differ-
ence € can be computed by plane ge-
ometry. For example, let's examine
the case of two sources as shown in
Figure K.1. In this figure we can
consider a point P a distance h to
the right of the center point O on
the screen. (A negative h means
that P is to the left of 0.} We can
now find e by similar triangles. The
two angles marked ¢ are equal, be-
cause they are alternate interfor an-
gles for parallel lines {the screen
and the line connecting the
sources). The angles marked 6 are
therefore also equal. because they
are complementary to the angles ¢.
From Appendix B, where the sine
function was defined. we have (us-
ing AS,S,Q}):
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L
4 ol K
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FIGURE K.1

Geometry of the rays from two sources
S; and S; that interfere in the focal plane
of a lens of focal length £, centered at C.

= =sino
or:
e =dsinb (K2)
We can find sin 8§ by using ACOP:
sin§ = L

R

In many interference set-ups the
angle 8 is quite small, so that R = f,
and hence sin ¢ = h/f. Equation K2
then gives:

€ = -d—h (for small 8) (K3)

7
Now we can apply the criterion of

Equation K1l. There are maxima

when:

gﬁ =0, £A, =27, =3\, . . .

J

that is, for points on the screen

where:

= L ool L
ho= 0, =Ng 2N =3N . (K4)

(position of intensity maxima}

L]
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Similarly, we find the minima
when:

T e I
h= $Aso =8N 2o %58 2.

{position of intensity minima)

.. (K5)

The fringe spacing is the distance
between successive maxima. Hence:

fringe spacing = X:—;

(K6)
If the focal length f of the lens is
very large, the lens is very weak,
and we can simply remove it with-
out significant change in the geom-
etry, leaving the screen at the same
large distance, which we now call
D. Equation K6 then says that the
fringes spacing is AD/d—the for-
mula used in Section 12.2E.

Note, however, that for high order
fringes, the angle 6 is not small, and
we cannot replace R by f. In fact,
since sin 6 never exceeds 1 (no mat-
ter what the angle 8), Equation K2
shows that ¢ can never exceed d.
Hence there can only be a finite
number of fringes on the screen,
and our approximate formula,
Equation K86, for the fringe spacing
ceases to be valid for high orders.
(The fringe spacing increases for

Intensity

100 200 300 400
1 1 1

higher order fringes, and the total
number of fringes is finite.)

2. Thin Film. Equation Kl for
two-beam iInterference can also be
used to find the wavelengths that
give intensity maxima and minima
when light is reflected by a thin
Jilm. We assume that the first and
second reflections are both hard or
both soft. (If one is hard and the
other soft, we need only inter-
change “maxima” and “minima” in
the following.) If the thickness of
the film is t, the extra path length €
of the beam reflected from the sec-
ond surface is 2t (at near normal in-
cidence). Hence we get:

maxima at

. 2t 2t 2t 2t
Am 2t T

(K7}
minima at
, 4t 4t 4t
A o= 4¢, 35 7
FIGURE K.2

Reflected intensity versus wavelength for
(a) a film with both reflections in phase,
(b) a different film with reflections out of
phase. The inserts in the graph show the
arrangement of the film.

1.25 =100 nm

500 600 ~— X' (nm)

0 100 200 300 400 500
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(a)
A
n>1 i
n=1 ¢ = 500 nm
ET n>1 I
T
£
£
1 1 1 l 1 -
0 200 400 600 nm N (=X for ng, = 1)
fz Visible -

{Reflection looks purple)
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Here )\’ is the wavelength in the
film. To relate A' to A, the wave-
length in air, we recall that when a
light wave enters a medium of index
of refraction n. the frequency of the
wave is not changed (Sec. 1.3A),
but the speed of the wave changes
from ¢ to ¢/n (Sec. 2.5). From the
formula of Section 1.3A that relates
speed and frequency to wavelength
we then find ' = Mn.

Thus, for a given thickness,
Equation K7 tells us those wave-
lengths that are most strongly re-
flected (maxima), and those that are
not reflected (minima). At interme-
diate wavelengths the reflected in-
tensity varies smoothly between
these maxima and minima. For ex-
ample, Figure K.2a shows this dis-
tribution for t = 100 nm, a typical
thickness for an antireflective coat-
ing where the first and second re-
flections are both hard. Shown in
Figure K.2b is the distribution for
t = 500 nm in the case where the
first reflection is soft and the sec-
ond hard.

3. Wedge. If the light is mono-
chromatic we can use Equation K7
to find the film thicknesses t that
give maxima or minima. In a film of
variable thickness, then, Equation
K7 tells us the positions of the max-
ima and minima. For example, con-
sider the film formed by the wedge
of air between two plane sheets of
glass that touch on one edge and
are separated by a gap on the other
edge (Fig. K.3). By similar triangles

FIGURE K.3

A wedge-shaped air film between two
sheets of glass.

we see that the distance x across
the air film satisfies x/t = w/s. Sub-
stituting for t the values from Equa-
tion K7 and noting that here one
reflection is soft and the other hard,
we find:
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minima at

Aw _Aw Aw
x =0, 25'225'325" -
(Since the wedge is made of air, we
have here n = 1 and A' = \.) The
minima appear as dark fringes
(parallel to the edge of the wedge),
and there are bright fringes in be-
tween.

How many fringes are there
across the entire width, that is,
when x = w? Since x increases by
{(Aw/2s) for each fringe, there will be
a total number of w/Aw/2s) = 2s/A
fringes. For example, if s = 0.1 mm
and A = 500 nm, we find that there
are 400 fringes. Changing s by only
M2 = 250 nm changes the number
of fringes by one, a change that is
easily observable. Thus such a
small distance can be very accu-
rately measured by this easily visi-
ble effect.

4. Single slit. The intensity min-
ima in the Fraunhofer diffraction

{K8)

pattern of a single slit of width b
can also be treated by using Equa-
tion K5. Although the slit is equiv-
alent to a large (infinite) number of
sources according to Huygens' prin-
ciple, these sources must cancel in
pairs in order to obtain destructive
interference. As explained in the
text, the first zero of intensity oc-
curs at such a screen position that,
for each source in the left half of the
siit, there is a source in the right
half of the slit whose wave arrives
exactly out of phase. Since the dis-
tance between such pairs of sources

FIGURE K4

(a) Intensity versus screen position in the
Fraunhofer difiraction pattern of a slit of
width b. (b) Intensity versus screen
position for Young's fringes when the
separation of the two slits is ten times
the width of the individual slits. (The
same slit width is used in both plots.)

Intensity
3
A 0 Af Position on screen
=% b
(a)

Intensity
AL
106

A 0 Al Position on screen

(b)

o>
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is d = b/2, this value substituted in
Equation K5 gives the first mini-
mum (zero) of intensity for the slit:

Y |
h—:xb

{K9)
{Again, for a distant screen we can
remove the lens and replace f by D.
This gives the formula of Sec.
12.5A.) We get further minima
whenever we can divide the slit
width b into an even number of re-
glons such that each Huygens’
source in one region has a destruc-
tively interfering partner in the next
region. This corresponds to pairs of
sources at distances d = b/2 (as in
Eq. K9), or d = b/4, or d = b/6,
. . . which, by Equation K5, have
thelr first minima (in the small-an-
gle approximation) at:

e N LN LN

e ==
26 “26' “2b
2 4 6
(K10)
=:)‘J‘-.:&f.t£f“
b b b

This equation gives the locations of
all the mintma in the Fraunhofer
diffraction pattern of a slit of width
b. (The higher-order minima for
any one of the source distances are
already contained in this sequence,
so they do not have to be listed sep-
arately.)

Thus the dark fringes due to a
single slit are regularly spaced
about the origin O by Afb, except at
the origin itself (h = 0). The central
fringe is of course bright, because
all the sources contribute in phase
there. Other bright fringes occur
between the dark fringes. Unlike in
the Young's fringe pattern, these
single-slit side maxima have inten-
sities that decrease rapidly with h.
For example, the Intensity of the
first bright fringe near the central
fringe (at h = 3\f/2b) Is less than %
of that of the central fringe. Figure
K.4a shows a plot of the intensity of
the single-slit Fraunhofer diffrac-
tion pattern. Figure K.4b shows
how this diffraction pattern modi-
fles the Young's fringes produced by
two slits.
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APPENDIX L
BREWSTER'S ANGLE

Hence:

sin 0, p

To find Brewster's angle, we must
find the incident angle for the spe-
cial case when the transmitted
beam is perpendicular to the re-
flected beam. Figure 13.5 tells us
that this happens when the reflec-
tlon angle, 6,, and the transmission
angle, 8, satisfy the relation:

8, + 90° + 0, = 180°, or

6, = 90° — 6,
Since the reflection angle equals the
incidence angle (6, = 6,), this

means that we are at Brewster's an-
gle when:

6, = 90° - 6, (L1)

But Snell's law (Eq. B5) gives an-
other relation between 6, and 6,:

(B5)

Therefore, at Brewster’s angle both
Equations L1 and B5 must be true.
Using Equation L1, we can then re-
write Equation B5 as:

n, sin 6, = n, sin 6,

siné, _n
sin (90° - 8) n,

Recall how the sine of an angle is
defined (Eq. B1) and consider Fig-
ure L.1. From this figure you can
see that:

(L2)

T

sin 6, = ;

and

sin (90° — 0) = 1

-~

FIGURE L.1

A right triangle with one angle equal to

sin(90° - 8) g )
The ratio p/q represents another
trigonometric function, the tan-
gent of 0

taﬂe|=g
q

{L4)
Hence, when the angle of incidence
is Brewster's angle (8, = 6z), we see
from Equations L4, L3, and L2,
that:

_pP_ sin®, _n
Lol q sin (90° — @) B n,
or:

n
tan 6y = = (Ls)

ny

As an example, for light traveling
Jrom air {n, = 1.0) to water {n, =
1.3), Equation L5 and a pocket cal-
culator tells us that 8 = 52.4°. For
light traveling from air to glass
{n, = 1.5), Brewster's angle is 85 =
56.3".
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APPENDIX M
MALUS'S LAW

We want to know how the intensity
of the transmitted light varles as
the angle between the polarizer and
the analyzer is changed. The polar-
izer transmits only light polarized
in one direction (arbitrarily drawn
vertical in Fig. M.1a). This polarized
light is then incident on the ana-
lyzer. Suppose the analyzer is ori-
ented at an angle 8 with respect to
the polarizer. We must then break
up the electric field incident at the
analyzer (E,,;) into two components:
one that the analyzer will pass
(Eow). and a perpendicular compo-
nent that it won't.
From Figure M. 1a we see that:

Ey

B cos 8
where the cosine of an angle is de-
fined, using Figure L.1, as:

o) ﬂ

(a)

(M1)

426

cos 6, = g

(M2)

Since the intensity of light is pro-
portional to the square of the elec-
tric field, the intensity of the light
transmitted by the analyzer Is seen
to be {(upon squaring Eq. M1):

o cos? @

Ioul
Equation M3 is called Malus’s law,
and is plotted in Figure M. 1b.

M3)

FIGURE M.1

(a) Only the component of the incident
polarized light that is parallel to the
analyzer’s orientation will be transmitted
by the analyzer. (b) A graph showing the
ratio of the intensity of the light
transmitted by the analyzer to that of the
light incident on the analyzer, for
different values of the angle 8 between
the direction of polarization of the
incident light and the orientation of the
analyzer.
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APPENDIX N

HOLOGRAPHIC
RECORDING AND
RECONSTRUCTION
OF WAVES

—

Let's check that a transmission ho-
logram such as described in Figure
14.3 indeed forms a plane recon-
structed beam at the same angle as
that of the original object beam. Fig-
ure N.la shows plane reference and
object beams striking the film. The
reference beam strikes the film per-
pendicularly and is shown at an in-
stant when one of its crests lies along
the thin emulsion. The object beam
arrives at angle 8, so <OAB = 0,.
The wavelength of the light in both
of these beams is \. The regions of
constructive interference on the film
(the bright fringes) are spaced a
distance d. Using AOAB and the def-
inition of the sine (Eq. B1), we can
see that d, A, and 6, are related in
the following way:

sin 8, = (N1)

d

During  reconstruction  (Fig.
N.1b), the hologram acts as a dif-
fraction grating. The wavelength of
the reconstruction beam is A, the
same as that used for exposure. The
grating constant here is d, the
same value as the fringe spacing
during exposure. We get construc-
tive interference when the path dif-
ference between two different slits
Is equal to a wavelength. That is,
according to Equations K1 and K2,
we get a first-order beam when:

€= =\ =d sin 0, (N2)
or:

3N
sin 0, = a4 (N3)

Comparing Equations N1 and N3
gives, for the + sign in Equation
N3:

sin 8, = sin 6, (N4)

or:
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Reference beam

P
P

(a)

Hence the

reconstructed beam
leaves the hologram at the same an-
gle as that of the object beam.

PONDER

The — sign in Equation N3 gives
8,cc = — 8,. What does this mean?
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Reconstruction beam

teserenicrsorannd o

(b)

FIGURE N.1

(a) Exposure of film by two plane waves.
The reference beam arrives
perpendicularly to the film while the
object beam arrives at angle 6,.

(b) During reconstruction, the first order
(reconstructed) beam leaves the
hologram at angle 8., where 8,.c = 8,.






