MATHEMATICS 391

ASSIGNMENT 11

Due: December 02, 2015

01° Let n be a positive integer. Let Π be a (nonempty) compact convex subset of \mathbb{R}^n . Let f be the real valued function defined on $\Pi \times \Pi$ as follows:

$$f(X,Y) = \|X - Y\| \qquad (X \in \Pi, Y \in \Pi)$$

Since $\Pi \times \Pi$ is a compact subset of $\mathbf{R}^n \times \mathbf{R}^n$, there must be members \bar{X} and \bar{Y} in Π such that $f(\bar{X}, \bar{Y})$ is the maximum value of f. Show that \bar{X} and \bar{Y} must be extreme points in Π , that is, vertices.

02° Let n=9. Let Δ be the standard simplex in ${\bf R}^n$ and let T be the following stochastic matrix:

having 9 rows and 9 columns. For the corresponding Markov Chain, describe the limit set L in detail. In particular, note that L is a simplex and display its vertices. Find a member:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{pmatrix}$$

of Δ such that:

$$TX = X$$

 03^{\bullet} Let n be a positive integer and let Δ be the standard simplex in \mathbf{R}^n . Let H be any member of \mathbf{R}^n . Let ϵ and η be the real valued functions defined on Δ as follows:

$$\epsilon(X) = \sum_{j=1}^{n} h_j x_j$$

$$\eta(X) = -\sum_{j=1}^{n} x_j \log(x_j)$$

$$(X \in \Delta)$$

For each member X of Δ , one may refer to $\epsilon(X)$ as the average value of H and to $\eta(X)$ as the entropy, relative to X. In turn, let $\hat{\epsilon}$ be a particular value of ϵ . Solve the following Extreme Value Problem with Constraints:

$$\sup \eta(X) = ?$$
 $(X \in \Delta, \ \epsilon(X) = \hat{\epsilon})$

For a proper argument you should apply some one of the methods of multivariable calculus, for instance, the method of Lagrange Multipliers.