MATHEMATICS 391

ASSIGNMENT 08

Due: November 04, 2015

 01^{\bullet} Let (X, \mathcal{A}, π) be a probability space. Let F be a random variable and $\mu = F_*(\pi)$ be the corresponding distribution. Specifically, let μ be determined as follows:

$$\mu(\{0\}) = 0.2, \ \mu(\{1\}) = 0.8$$

Compute the mean and the standard deviation for F:

$$m = 0.8, \ s = 0.4$$

Let:

$$F_1, F_2, F_3, \ldots$$

be an independent sequence of random variables having common distribution μ . Let n = 10000. Let A be the set in \mathcal{A} defined by the following condition:

$$x \in A \text{ iff } 7920 \le (F_1(x) + F_2(x) + \cdots + F_n(x)) \le 8080$$

Apply the Central Limit Theorem to estimate $\mu(A)$. You should obtain:

$$\frac{1}{\sqrt{2\pi}} \int_{-2}^{2} exp(-\frac{1}{2}y^2) dy$$

 02^{\bullet} Let (X, \mathcal{A}, π) be a probability space. Let F be a random variable and $\mu = F_*(\pi)$ be the corresponding distribution. Specifically, let λ be a positive number and let μ be determined as follows:

$$\mu(\{n\}) = \exp(-\lambda) \frac{1}{n!} \lambda^n \qquad (n = 0, 1, 2, \ldots)$$

Verify (again) that both the mean and the variance of μ equal λ . Let:

$$F_1, F_2, F_3, \ldots$$

be an independent sequence of random variables having common distribution μ . Let n be a positive integer. Let a and b be nonnegative numbers for which a < b. Let A be the set in \mathcal{A} defined by the following condition:

$$x \in A \text{ iff } a \le (F_1(x) + F_2(x) + \cdot + F_n(x)) \le b$$

Apply the Central Limit Theorem to estimate $\mu(A)$. You should obtain a number of the form:

$$\frac{1}{\sqrt{2\pi}}\int_{r}^{s} exp(-\frac{1}{2}y^{2})dy$$

where r and s are numbers for which r < s

03° Review the definition of the distribution μ in the foregoing problem. One refers to it as the Poisson Distribution, with parameter λ . Calculate the Characteristic Function for μ :

$$\hat{\mu}(t) = \int_{\mathbf{R}} exp(ity)\mu(dy) = exp(\lambda(exp(it) - 1))$$

where t is any real number.

 04^{\bullet} Apply your developing understanding of Characteristic Functions to show that, for any two independent random variables F and G, if the distribution for F is Poisson with parameter α and if the distribution for G is Poisson with parameter β then the distribution for F + G is Poisson with parameter $\alpha + \beta$.