MATHEMATICS 391

ASSIGNMENT 7: Poincaré and Kac

Due: October 28, 2015

 01^{\bullet} Let:

$$(X, \mathcal{B}, \mu)$$

be a normalized measure space. By definition \mathcal{B} is a σ -algebra of subsets of X, μ is a measure defined on \mathcal{B} , and $\mu(X) = 1$. Let F be a measurable mapping carrying X to itself. We mean to say that, for each set B in \mathcal{B} , $F^{-1}(B)$ is a set in \mathcal{B} . Let F preserve μ :

$$F_*(\mu) = \mu$$

so that, for each set B in \mathcal{B} :

$$\mu(F^{-1}(B)) = \mu(B)$$

One refers to:

$$(X, \mathcal{B}, \mu, F)$$

as a (discrete) dynamical system. For each x in X, one refers to:

$$x = F^{0}(x), x_{1} = F^{1}(x), x_{2} = F^{2}(x), \dots, x_{j} = F^{j}(x), \dots$$

as the *orbit* of x in X. Let A be any set in \mathcal{B} for which $0 < \mu(A)$. Let:

$$B = A \cup F^{-1}(A) \cup F^{-2}(A) \cup \cdots \cup F^{-j}(A) \cup \cdots$$

Show that:

$$F^{-1}(B) = F^{-1}(A) \cup F^{-2}(A) \cup \cdots \cup F^{-j}(A) \cup \cdots$$

Obviously, $F^{-1}(B) \subseteq B$. Let:

$$C = B \backslash F^{-1}(B)$$

Show that C is composed of the points in A which, under the action of F, leave A and never return. Show that:

$$\mu(C) = 0$$

Let $A^* = A \setminus C$. Of course $A^* \subseteq A$. Show that:

$$\mu(A^*) = \mu(A)$$

Show that every point in A^* returns at least once to A. This assertion is the (weak) RECURRENCE THEOREM of Poincaré. Now let:

$$A^{**} = (A^* \backslash F^{-1}(C)) \cap (A^* \backslash F^{-2}(C)) \cap \cdots \cap (A^* \backslash F^{-j}(C)) \cap \cdots$$

Of course, $A^{**} \subseteq A^*$. Show that:

$$\mu(A^{**}) = \mu(A^*) = \mu(A)$$

Show that every point in A^{**} returns infinitely often to A^{**} . This assertion is the (strong) RECURRENCE THEOREM of Poincaré. For each point x in A^{**} , let $\tau(x)$ be the smallest among all positive integers j for which $F^{j}(x) \in A^{**}$. By definition:

$$F^{\tau(x)}(x) \in A^{**}$$

One refers to $\tau(x)$ as the first return time to A^{**} for x. Now let the (discrete) dynamical system (X, \mathcal{B}, μ, F) be ERGODIC, which is to say that:

(•) for any set E in B, if
$$F^{-1}(E) = E$$
 then $\mu(E) = 0$ or $\mu(E) = 1$

For later reference, note that, as an immediate consequence of condition (\bullet) , if $0 < \mu(E)$ and if $F(E) \subseteq E$ then $\mu(E) = 1$. (To prove that it is so, one need only form the set:

$$\hat{E} = \bigcup_{j=0}^{\infty} F^{-j}(E) \qquad (E \subseteq F^{-1}(E) \subseteq F^{-2}(E) \subseteq \cdots)$$

then observe that $0 < \mu(E) = \mu(\hat{E})$ and that $F^{-1}(\hat{E}) = \hat{E}$, so that $\mu(E) = \mu(\hat{E}) = 1$.) At this point, prove that:

$$\frac{1}{\mu(A^{**})} \int_{A^{**}} \tau(x) \mu(dx) = \frac{1}{\mu(A^{**})}$$

This assertion is the AVERAGE RETURN TIME THEOREM of Kac. One may infer that the smaller the measure of A^{**} the longer the average return time to A^{**} . The proof is slippery. Simplify matters by presuming that F is invertible. Start with the subsets A_k of A^{**} :

$$A_k = \{x \in A^{**} : \tau(x) = k\}$$

where k is any positive integer. Now prove the Theorem of Kac by showing that:

$$(\kappa) \qquad \sum_{i=1}^{\infty} k\mu(A_k) = 1$$

To that end, form the sets:

$$E_{k\ell} = F^{\ell}(A_k) \qquad (k \in \mathbf{Z}^+, \ 0 \le \ell < k)$$

Show that the foregoing sets are mutually disjoint. (For this step, the presumption that F is invertible proves crucial.) Let E be the union of all of them:

$$E = \bigcup_{k=1}^{\infty} \bigcup_{\ell=0}^{k-1} E_{k\ell}$$

By examining the following display:

you should see that:

$$\mu(E) = \sum_{j=1}^{\infty} k\mu(A_k) = \int_{A^{**}} \tau(x)\mu(dx)$$

Obviously, $F(E) \subseteq E$. By the remark following condition (\bullet) (which introduces the definition of ERGODIC for a dynamical system), you may infer that $\mu(E) = 1$. The prove of the Theorem of Kac is complete.