MATHEMATICS 391

ASSIGNMENT 5: The Weak Law of Large Numbers

Due: October 7, 2015

01° Let (X, \mathcal{A}, π) be a probability space. Let n be a positive integer and let:

$$F_1, F_2, \ldots, F_n$$

be **R**-valued random variables on X. For each index j $(1 \le j \le n)$, let m_j be the mean of F_j :

$$m_j = \int_X F_j(x)\mu(dx)$$

and let s_j^2 be the variance:

$$s_j^2 = \int_X (F_j(x) - m_j)^2 \mu(dx)$$

Let the random variables be *uncorrelated*, in the sense that, for any indices j and k $(1 \le j < k \le n)$:

$$\int_{X} (F_{j}(x) - m_{j})(F_{k}(x) - m_{k})\mu(dx) = 0$$

Let \bar{F} be the mean of the random variables;

$$\bar{F} = \frac{1}{n}(F_1 + F_2 \cdots + F_n)$$

Let \bar{m} be the mean of \bar{F} :

$$\bar{m} = \int_{Y} \bar{F}(x)\mu(dx)$$

and let \bar{s}^2 be the variance:

$$\bar{s}^2 = \int_X (\bar{F}(x) - \bar{m})^2 \mu(dx)$$

Show that:

$$\bar{m} = \frac{1}{n}(m_1 + m_2 + \dots + m_n)$$

and:

$$\bar{s}^2 = \frac{1}{n^2} (s_1^2 + s_2^2 + \dots + s_n^2)$$

02° Let the random variables F_1, F_2, \ldots , and F_n have common mean, soit m. Note that:

$$\bar{m} = m$$

Le them have common variance, soit s^2 . Note that:

$$\bar{s}^2 = \frac{1}{n}s^2$$

Let a be any positive number. Apply Chebychev's Inequality to show that:

$$\mu(\{x \in X : a \le |\bar{F}(x) - m|\}) \le \frac{s^2}{na^2}$$

Let ℓ be any positive integer and let $n = 100\ell^2$. Note that:

$$\mu(\{x \in X : \frac{s}{\ell} \le |\bar{F}(x) - m|\}) \le \frac{1}{100}$$

03° Let the random variables F_1, F_2, \ldots , and F_n be *independent*, which is to say that, for any borel sets:

$$E_1, E_2, \ldots, E_n$$

of \mathbf{R} :

$$\mu(F_1^{-1}(E_1) \cap F_2^{-1}(E_2) \cap \cdots \cap F_n^{-1}(E_n))$$

$$= \mu(F_1^{-1}(E_1)\mu(F_2^{-1}(E_2) \cdots \mu(F_n^{-1}(E_n))$$

In the lectures, we will prove (prove again, actually) that, for any indices j and k $(1 \le j < k \le n)$:

$$\int_X F_j(x)F_k(x)\mu(dx) = \int_X F_j(x)\mu(dx) \int_X F_k(x)\mu(dx)$$

Using the foregoing relations, prove that the random variables F_1, F_2, \ldots , and F_n are uncorrelated.