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1 Surfaces

01◦ Let U be a region in R2 and let H be an injective mapping carrying U
to R3. Let S := H(U) be the range of H , a subset of R3. We will refer to S
as a surface in R3, parametrized by H . We will represent members of R2 as
follows:

u = (u1, u2)

and members of R3 as follows:

x = (x1, x2, x3)

Now the mapping H can be expressed in the following form:

(1) (u1, u2) = u −→ H(u) = x = (x1(u1, u2), x2(u1, u2), x3(u1, u2))

We will represent the total derivative of H at u as follows:

DH(u) =


 H1

1 (u) H1
2 (u)

H2
1 (u) H2

2 (u)
H3

1 (u) H3
2 (u)




which is to say that:

(2) Ha
j (u1, u2) :=

∂xa

∂uj
(u1, u2) (1 ≤ j ≤ 2, 1 ≤ a ≤ 3)

We require that, for each u in U , the column vectors:

H1(u) :=


H1

1 (u)
H2

1 (u)
H3

1 (u)


 and H2(u) :=


H1

2 (u)
H2

2 (u)
H3

2 (u)




be linearly independent, which is to say that:

H1(u) × H2(u) �= 0
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02◦ Let N(u) be the unit vector normal to the surface S at the point H(u):

(3) N(u) :=
1

‖H1(u) × H2(u)‖ .(H1(u) × H2(u))

U

S

H

H

H

N

u

u

u

x

x

x

1

1
1

2

2

2

x3

u( )H u( )
ud jj

=
xd

a
a
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03◦ We define the first fundamental form G for the surface S as follows:

G(u) =
(

G11(u) G12(u)
G21(u) G22(u)

)

where:

(4) Gk�(u) := Hk(u) • H�(u) (1 ≤ k ≤ 2, 1 ≤ � ≤ 2)

One should note that G(u) is a symmetric positive definite matrix.

04◦ We plan to describe the various metric properties of the surface S, such
as the length of a curve in S, the area of a subset of S, and the curvature
of S at a point. We will show that these properties can all be expressed in
terms of the first fundamental form. This fact releases us from the view that,
in general, a surface must lie in R3. We may focus our attention upon the
region U in R2 and the first fundamental form G:

G(u) =
(

G11(u) G12(u)
G21(u) G22(u)

)

with which it has in some fashion been supplied. We may then proceed to
calculate the various metric properties of U in terms of G.

05◦ Now let J be an open interval in R and let Γ be a mapping carrying J
to R3 such that the range C := Γ(J) of Γ is a subset of the surface S. We
require that, for each t in J , DΓ(t) �= 0. We shall refer to C as a curve in S,
parametrized by Γ. Of course, we may introduce the mapping γ carrying J
to U :

t −→ γ(t) = u = (u1(t), u2(t))

such that:

(Γ1(t), Γ2(t), Γ3(t)) = Γ(t)
= H(γ(t))

= (H1(u1(t), u2(t)), H2(u1(t), u2(t)), H3(u1(t), u2(t)))

The mapping γ describes the given curve C in terms of the parameters u1 and
u2. By the Chain Rule, we have:

DΓ(t) = DH(γ(t))Dγ(t)

Hence:

(5)
dΓ
dt

(t) =
duj

dt
(t).Hj(γ(t))
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For the latter relation, we have invoked the summation convention, which
directs that indices which appear in a given expression both “up” and “down”
shall be summation indices running through their given range (in this case,
from 1 to 2). In turn:

‖dΓ
dt

(t)‖2 =
duk

dt
(t)Gk�(u1(t), u2(t))

du�

dt
(t)

Now we may proceed to calculate the length of the segment of the curve C in
S from Γ(t′) to Γ(t′′):

(6)
∫ t′′

t′
‖DΓ(t)‖dt =

∫ t′′

t′

√
duk

dt
(t)Gk�(u1(t), u2(t))

du�

dt
(t)dt

where t′ and t′′ are any numbers in J for which t′ ≤ t′′. We are led to interpret:

(7) |||V ||| :=
√

V kGk�(u)V �

as the length of the tangent vector:

V :=
(

V 1

V 2

)

to U at u, and to interpret:

∫ t′′

t′

√
duk

dt
(t)Gk�(u1(t), u2(t))

du�

dt
(t)dt

as the length of the segment of the curve γ in U from γ(t′) to γ(t′′). More
generally, we interpret:

(8) V ◦ W := V kGk�(u)W �

as the inner product of the vectors:

V =
(

V 1

V 2

)
and W =

(
W 1

W 2

)

in R2, tangent to U at u.

06◦ We may also proceed to calculate the area of a subset T of S, as follows.
We first present T as T = H(V ), where V is a subset of U . We then equate
the area of T with the following double integral:

(9) area(T ) :=
∫ ∫

V

‖H1(u1, u2) × H2(u1, u2)‖du1du2
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Since:

‖H1(u) × H2(u)‖2 = G11(u)G22(u) − G21(u)G12(u) =: g(u)

we interpret:

(10) area(V ) :=
∫ ∫

V

√
g(u1, u2)du1du2

as the area of the subset V of U .

2 Curvature

07◦ Let us consider a particular point P̄ :

P̄ = (x̄1, x̄2, x̄3) = H(ū1, ū2)

in the surface S. We plan to describe the curvature of S at P̄ . To that end,
let us consider a curve C in S containing P̄ . The curvature of C at P̄ derives
in part from the bending of C within S and in part from the bending of S
itself. One may refer to the former as the internal bending of C and to the
latter as the external bending. One may say that the internal bending is a
matter of free choice but that the external bending is forced upon the curve
by the structure of the surface. Among all curves C in S containing P̄ , we
may consider those for which the external bending is minimum and those for
which it is maximum. By definition, the gaussian curvature of the surface S
at the point P̄ is the product of these two extreme values.

08◦ Let J be an open interval in R and let Γ be a mapping carrying J to R3

such that C := Γ(J). As usual, we require that, for each t in J , DΓ(t) �= 0.
For convenience, let 0 be in J and let Γ(0) = P̄ . In turn, let γ be the mapping
carrying J to U :

t −→ γ(t) = u = (u1(t), u2(t))

such that:

(Γ1(t), Γ2(t), Γ3(t)) = Γ(t)
= H(γ(t))

= (H1(u1(t), u2(t)), H2(u1(t), u2(t)), H3(u1(t), u2(t)))

Of course, γ(0) = ū = (ū1, ū2). We have:

dΓ
dt

(t) =
duj

dt
(t).Hj(γ(t))
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and:
d2Γ
dt2

(t) =
d2uj

dt2
(t).Hj(γ(t)) +

duk

dt
(t)

du�

dt
(t).Hk�(γ(t))

where:

(11) Hk�(u) :=
∂2H

∂uk∂u�
(u)

Now we may introduce functions Kj
k� and Lk� such that:

(12) Hk�(u) = Kj
k�(u).Hj(u) + Lk�(u).N(u)

The foregoing relations are called Gauss’ Equations. One should note carefully
that:

(13) Lk�(u) = Hk�(u) • N(u)

One refers to L:

L(u) =
(

L11(u) L12(u)
L21(u) L22(u)

)

as the second fundamental form for the surface S. One refers to K1 and K2:

K1(u) =
(

K1
11(u) K1

12(u)
K1

21(u) K1
22(u)

)
and K2(u) =

(
K2

11(u) K2
12(u)

K2
21(u) K2

22(u)

)

as the connection coefficients for S. Finally, we obtain:

(14)
d2Γ
dt2

(t) = Aj(t).Hj(γ(t)) + B(t).N(γ(t))

where:

(15) Aj(t) :=
d2uj

dt2
(t) +

duk

dt
Kj

k�(γ(t))(t)
du�

dt
(t)

and:

(16) B(t) :=
duk

dt
(t)Lk�(γ(t))

du�

dt
(t)

Clearly:
Aj(t).Hj(γ(t))

is tangent to S at H(u). It represents the internal bending of C at H(u).
Moreover:

B(t).N(γ(t))

is normal to S at H(u). It represents the external bending of C at H(u).
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09◦ At this point, we are interested in the value of B(0):

(17) B(0) =
duk

dt
(0)Lk�(ū)

du�

dt
(0)

since it measures the “external bending” of C at P̄ . To set the scale of
computation, we require that C be parametrized by arc length. The effect of
this requirement is to force:

duk

dt
(t)Gk�(γ(t))

du�

dt
(t) = 1

In particular:

(18)
duk

dt
(0)Gk�(ū)

du�

dt
(0) = 1

Now we wish to study the minimum and maximum values of the quantity:

V kLk�(ū)V �

where V is any vector in R2 meeting the condition:

V kGk�(ū)V � = 1

The product of these extreme values is the gaussian curvature for S at P̄ .

10◦ Here is our problem. We have two symmetric matrices:

L =
(

L11 L12

L21 L22

)

and:

G =
(

G11 G12

G21 G22

)

The latter is positive definite. These matrices define functions (“quadratic
forms”) as follows:

λ(V ) := V kLk�V
� = (V 1 V 2 )

(
L11 L12

L21 L22

) (
V 1

V 2

)

and:

γ(V ) := V kGk�V
� = (V 1 V 2 )

(
G11 G12

G21 G22

) (
V 1

V 2

)
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We wish to calculate the product of the minimum and the maximum values
of the quantity λ(V ), subject to the condition γ(V ) = 1. By “diagonalizing”
the quadratic form L relative to the (positive definite) quadratic form G, one
can show that the foregoing product equals:

L11L22 − L21L12

G11G22 − G21G12

Accordingly, we define the curvature of the surface S at the point P̄ to be:

(19)
κS(P̄ ) : =

L11(ū)L22(ū) − L21(ū)L12(ū)
G11(ū)G22(ū) − G21(ū)G12(ū)

=
L11(ū)L22(ū) − L21(ū)L12(ū)

g(ū)
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