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1 Surfaces

01° Let U be a region in R? and let H be an injective mapping carrying U
to R3. Let S := H(U) be the range of H, a subset of R?. We will refer to S
as a surface in R3, parametrized by H. We will represent members of R? as

follows:

U= (ul,u2)

and members of R? as follows:
r = (x', 2% 23)
Now the mapping H can be expressed in the following form:

(1) (u',u?) =u — H(u) =z = (*(u',u?), 22 (u', u?), 23 (u', u?))

We will represent the total derivative of H at u as follows:

Hi(u) Hy(u)
DH(u) = | Hf(u) H3(u)
Hi(u) H3(u)

which is to say that:

ox°
ap, 1,2y . 1,2 -
(2) Hj(u,u).fauj(u,u) (1<j<2,1<a<3)

We require that, for each v in U, the column vectors:

Hi (u) Hjy (u)
Hyi(u) = | H?(u) and Ho(u) = [ H2(u)
H (u) H3 (u)

be linearly independent, which is to say that:

Hl(u) X Hg(u) 7é 0



02° Let N(u) be the unit vector normal to the surface S at the point H(u):

1
Au?
u
N
ul
u
! H (W)= == (u)
\ y
N H,
1/ \
X2
X
Hy s
Xl



03° We define the first fundamental form G for the surface S as follows:

_ ( Gu(u) Gia(u)
G(U)— (Ggl(u) GQQ(U))

where:
(4) Gre(u) := Hy(u) @ Hy(u) (1<k<2,1<¢<2)
One should note that G(u) is a symmetric positive definite matrix.

04° We plan to describe the various metric properties of the surface S, such
as the length of a curve in S, the area of a subset of S, and the curvature
of S at a point. We will show that these properties can all be expressed in
terms of the first fundamental form. This fact releases us from the view that,
in general, a surface must lie in R3. We may focus our attention upon the
region U in R? and the first fundamental form G-

_ [ Gu(u) Giz(w)
G(u)_ (Ggl(u) GQQ(U))

with which it has in some fashion been supplied. We may then proceed to
calculate the various metric properties of U in terms of G.

05° Now let J be an open interval in R and let I" be a mapping carrying J
to R3 such that the range C := I'(J) of I is a subset of the surface S. We
require that, for each ¢ in J, DI'(¢) # 0. We shall refer to C' as a curve in S,
parametrized by T'. Of course, we may introduce the mapping ~ carrying J
to U:

t— () = u= (u'(t),u*(t))

such that:
(D), T2 (), T3(¢)) = T(t)

= H(y(1))
= (H'(u (t), u? (), H? (u' (8),u* (), H (u' (£), (1))

1

The mapping v describes the given curve C' in terms of the parameters " and

u?. By the Chain Rule, we have:
DI(t) = DH(~(t))Dy(t)

Hence:

6 0 = 201, (0)
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For the latter relation, we have invoked the summation convention, which
directs that indices which appear in a given expression both “up” and “down”
shall be summation indices running through their given range (in this case,
from 1 to 2). In turn:

IS0 = 2 )G 0 220 2 1)

Now we may proceed to calculate the length of the segment of the curve C in
S from I'(¢') to I'(¢"):

(6) /t/ [|DT(¢)||dt = / \/duk t)Gre(ut t)7u2(t))dd—uj(t)dt

where t’ and ¢ are any numbers in J for which ¢’ < #””. We are led to interpret:

(7) VI =/ VEGRe(uw)V*

as the length of the tangent vector:

Vl
V.= (VQ)
to U at u, and to interpret:

/ \/d“k £)Ge (! t),uQ(t))dd—lf(t)dt

as the length of the segment of the curve v in U from ~(t') to v(¢”). More
generally, we interpret:

(8) VoW :=VFG(u)W*

as the inner product of the vectors:

1 1
V—<“§2> and W—<S//2)
in R?, tangent to U at w.

06° We may also proceed to calculate the area of a subset T of S, as follows.
We first present T as T = H(V'), where V is a subset of U. We then equate
the area of T with the following double integral:

9) area(T) := //v | Hy(ut, u?) x Hy(ub, u?)||du’ du?
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Since:
| Hi(u) x Hy(u)|[* = G11(u)Gaz(u) — Ga1(u)Gra(u) =: g(u)

we interpret:

(10) area(V) := // Vg(ul, u?)du' du?
1%
as the area of the subset V of U.

2 Curvature

07° Let us consider a particular point P:
P = (z',z% %) = H(a",u?)

in the surface S. We plan to describe the curvature of S at P. To that end,
let us consider a curve C in S containing P. The curvature of C' at P derives
in part from the bending of C' within S and in part from the bending of S
itself. One may refer to the former as the internal bending of C' and to the
latter as the external bending. One may say that the internal bending is a
matter of free choice but that the external bending is forced upon the curve
by the structure of the surface. Among all curves C' in S containing P, we
may consider those for which the external bending is minimum and those for
which it is maximum. By definition, the gaussian curvature of the surface S
at the point P is the product of these two extreme values.

08° Let J be an open interval in R and let I' be a mapping carrying J to R?
such that C' :=T'(J). As usual, we require that, for each ¢t in J, DI'(¢) # 0.

For convenience, let 0 be in J and let I'(0) = P. In turn, let v be the mapping
carrying J to U:
t— () = u = (u'(t),u*(t))

such that:

(IH(2),T%(1), T°(t)) = (1)

Of course, v(0) = @ = (u!,u?). We have:

Tt = 0y, ()
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and:

2 20,9 uk ut
T2 = T2 0.1,60) + 2 )% (). 1 (1)
where:
(11) Hie(u) == %(u)

Now we may introduce functions Kiz and Ly, such that:
(12) Hyo(u) = K ,(u). H;(u) + Lye(u).N (u)

The foregoing relations are called Gauss’ Equations. One should note carefully
that:

(13) Lye(u) = Hye(u) @ N(u)
One refers to L: Lu(u) Lus(u)
. 11(u 12(u
Lluy = (Lzl(u) Lzz(u))

as the second fundamental form for the surface S. One refers to K! and K2:

1 _ Klll(u) K112(u) _ K121(U) K122(U)
KW)(@W}%W)”dWW@%MKwQ

as the connection coefficients for S. Finally, we obtain:

d’r »
(14) iz (1) = AT ()-H;(v(t)) + B(2)-N(+(2))
where:
2,0 uk ul
(15) 1(e) = S (0 + S K, G 0) (0 5 ()
and:
uk u’
(16) B(1) = M) Lo (1) Do (1)
Clearly:

A7 (t).H;(y(t))

is tangent to S at H(u). It represents the internal bending of C at H(u).
Moreover:

B(t).N(v(t))
is normal to S at H(u). It represents the external bending of C' at H(u).
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09° At this point, we are interested in the value of B(0):

’U,k Uz
(7) B(O) = 2 (0) ()

a (0)

since it measures the “external bending” of C' at P. To set the scale of
computation, we require that C' be parametrized by arc length. The effect of
this requirement is to force:

Uk ’LLE
B (G (1) (1) =1

In particular:

Uk Uz
(18) o 0)Ge(m) o (0) = 1

Now we wish to study the minimum and maximum values of the quantity:
VE Ly (a)V*
where V is any vector in R? meeting the condition:
VEG(a)VE =1

The product of these extreme values is the gaussian curvature for S at P.

10° Here is our problem. We have two symmetric matrices:
L1 Lio
L =
<L21 Lo

Gi1 Giz
G =
<G21 G2
The latter is positive definite. These matrices define functions (“quadratic
forms”) as follows:

1
AV) = VFLg Vi = (VY V?) (éi ﬁ;i) <“£2>

and:

a,nd:
. & 2 12

7



We wish to calculate the product of the minimum and the maximum values
of the quantity A(V'), subject to the condition v(V) = 1. By “diagonalizing”
the quadratic form L relative to the (positive definite) quadratic form G, one
can show that the foregoing product equals:

Li1Lay — Loy Lo
G11G22 — G21G12

Accordingly, we define the curvature of the surface S at the point P to be:

(19)




