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The Homogeneous Wave Equation

01° Let f and g be complex valued functions defined on R3. We propose to
solve the Homogeneous Wave Equation:

(o) Yee(t, x,y, 2) — (AY) (¢, z,y,2) =0

subject to the Initial Conditions:

(.) W(vavyvz) = f(xvyvz)v %(O,x,y,z) = g(:v,y,z)

Of course, v is the complex valued function defined on R*, required to be
found. To be clear, we recall that:

(At 2,9, 2) = Yaa(t, 2y, 2) + gy (8 2,y 2) +722(8 2,9, 2)

The Method of Fourier: Spherical Means

02° We pass to the Fourier Transform of ~:

A(t,u, v, w) /// ezt wz) )t gy 2ym(dedydz)
R3

v(t,x,y, 2 /// +i "“”“wz)'?(t,u,v,w)m(dudvdw)
R3

In the foregoing relations, we have adopted the following notational conven-
tion:

(¢)

1
m(dudvdw) = ——= dudvduw, m(dzdydz) =

@ )3/2 dxdydz

1
(2m)3/2
Clearly:

Yer(t, .y, 2 /// etiurtoutwa) g (b u, v, w)ym(dudvdw)
R3

(&), z,y, 2 /// etitumtoytws) (42 L2 L w?)4(t, u, v, w)m(dudvdw)
R3



We obtain the following reformulation of equations (o) and (e):
(o) A (t, u, v, w) 4+ (u? +0? +w?)A(t, u, v, w) =0

(o) 5(0, u, v,w) = f(u,v,w), A (0, u, v, w) = g(u, v, w)
Now 4 must take the form:

ﬁ(t,u,v,w)
= f(u,v,w)cos(vu2+v2+w?t)
1
+ g(u, v, W) ————sin(VuZ+v2+w?t
J( ) T ( )

Of course, we need to describe 7 in terms of the form for 4.

03° To that end, let h be a complex valued function defined on R?2, perhaps
f or g, and let h be the Fourier Transform of h. Let up, and fi5 be the complex
valued functions, related by the Fourier Transform, defined on R* as follows:

pn(t, .y, z) = /// etiuetoyrwz) o (b v, w)m(dudvdw)
R3

v

VuZ4 v 4wt

(1)

fin(t, w, v, w) = h(u,v, w) sin(vVu?+v24+w?t)

Obviously:
. g . X
’Y(tv u, v, w) = &t:uf(ta u,v, U}) + tluﬂl](tv u, v, w)
Consequently:
0
(*) "y(t,I,y,Z) = Etﬂf(tvxvyaz)+tﬂg(t7$7yaz)

04° But we need to present jiy and pg in a more perspicuous form. To that
end, we contend that:

1 TS T—— 1 TS
(2) \/ﬁSZTL( u2+02+w2) = E // €+Z(uw+vy+wz)005(9)d¢d9
(7 v w 2

where ¥ is the unit sphere in R? and where:



For now, let us assume that relation (2) holds. [See article 07°.]

05° Clearly, for any number ¢, we have:

1
VuZ4+v2+w?t

(One should note that the function on the left is even in ¢ and the integral on
the right is a real number.) Consequently:

// e HilutZrotgtwtz) 2 t*cos(0)d¢dl
)

sin(vVu24+v2+w?t) = // e+z‘(uti+vtzj+wtz)tzcos(e)d¢d6.
b

47t

i (¢ =h —
:uh( ,U,’U,’LU) (uvvvw)élﬂ_tg

so that:

n(t,x,y, 2 /// . etiluatvyrws) o v, w)m(dudvdw)
R

3)
=1 t2// (z +tZ,y + 17, 2 + t2)t*cos(0)dpdh
T

Clearly, pp(t,z,y,z) is the average value of h over the sphere of radius [¢|
centered at (z,vy, 2).

06° One refers to uy as the Spherical Mean defined by h. Now we can present
the solution v of the Wave Equation in terms of Spherical Means, as follows:

v(t, = y,Z)

815 e / flx +tz,y +ty, z + t2)tcos(0)dpdo
(*)

+ —2 // g(z +tZ,y + ty, z + t2)t*cos(0)depdo
At >

07° Finally, let us prove relation (2). For that purpose, let us introduce the
function ¢:

o(u,v,w) = % // e Ut w) 0og(0) dedh
TJJs

which represents the right hand side of the relation. Obviously, ¢ is invariant
under rotations, so we may present ¢ as follows:

d(u,v,w) = 1P(s) (0 < s=vVur+v2+w?)



Moreover:
(Ag)(u,v,w) = —4i / / (22 + 72 + 22)e T BTt o5(9) dpdf
™ =

= —o¢(u, v, w)

so that: 5
07(s) + 0 (5) = —(s)

Under the transformation x(s) = st(s), we find that:

Consequently, there must be complex numbers a and 8 such that:

P(s) = aécos(s) + ﬂészn(s)

However:

limy(s) =1

Therefore, « = 0, 8 =1, and:

U(s) = Zsin(s)
The proof of relation (2) is complete.
Energy
08° Let v be a solution of the Homogeneous Wave Equation:
() Yir(tx,y, 2) = (D)t 2,y,2) = 0
subject to the Initial Conditions:
(¢) V0, 2,y,2) = fz,y,2), 70,29, 2) = g(2,y,2)
Let € be the function defined on R* as follows:
e(t,z,y,2)

1
= 5 (It 2y, 2P+ et 2y, 2))2 + [yt 2,y 2) P + [t 2,9, 2)?)



One refers to € as the Energy Density. We contend that the corresponding

Energy Integral:
w0y = [[[ ety zmidodyiz)
R3

is constant. To prove the contention, we call upon several cases of Parseval’s
Relation:

///RB v (t, 2, y, 2) Pm(dadydz) :///RS 184 (£, w, v, w) 2 dudvdw)

I bt P + b 2 + (e 2)P(dodydz)

= /// (u? + v* + w?) |3 (t, u, v, w)|*m(dudvdw)
R3
From article 2°, we recover the relations:

:Y(t’ u? ’U7 w)

= f(u,v,w)cos(vu2+v2+w?t)
1
+ g(u, v, W) ———o—or—=
g( ) R

sin(vVu?+v2+w?t)
:Yt(t,u,'U,’LU)
= — f(u, v, 0)Vu2+v2 +w?sin(vu2+v2+w? t)

+ §(u, v, w)cos(V u+v2+w?t)

Let us write s for vVu? + v2 + w?, C for cos(st), and S for sin(st). Also, let
us drop display of the variables u, v, and w. Now we have:

4P = (FC + §-8)(fC +9.5)

|5:12 = (= fsS + §C)(— fsS + §C)

By straightforward computation, we find that:

el + $2 1312 = 1917 + s2|f |2



Hence:
- ///R3 (Wt(t’ u, v, w) 2 + (u? + v+ w?)|f(t, u,v,w)|2)m(dudvdw)
///R 1w, v,w) 2 + (u® + 0% +w?) | f (u, v, w)*) m(dudvdw)

Obviously, 7 is constant. In fact:

@ a0 =3 [[[ | lan 2 + (90 @2 mdedyaz)

A Particular Solution of the Inhomogeneous Wave Equation

09° Let § be a complex valued function defined on R*. We propose to solve
the Inhomogeneous Wave Equation:

(o) Yt (t, x,y, 2) — (AY) (¢, 2,0y, 2) = 6(¢, 2, y, 2)

subject to the particular Initial Conditions:

(.) 7(07x7yaz) = Oa ”Yt(OaI,yvz) =0

To that end, we introduce the complex valued function B defined on R® as
follows:

B(s,t,x,y,2) = 471'152/ 5(s, o + 12,y + ty, z + t2)t>cos(0)dpdo

With reference to our prior development of Spherical Means, we find that, for
each s:

(4) ﬂtt(satvxvyaz)_(Aﬂ)(svtaxayvz):O

(5) /8(57 O’I’y7 Z) = 07 /Bt(8507x7y’z) :6(S’I’y7 Z)

In turn, let v be the complex valued function defined on R* as follows:

() V(b 2.y, 2) / B(s,t — s,a,y, =)ds

Let us verify that + satisfies the foregoing conditions (o) and (e).



10° We note first that:

7(0,2,y, 2) /B —8,2,Y,2)ds =0

By differentiation with respect to ¢, we find that:

t
’Yt(taxayvz):ﬂ(taovxvyaz)—i_/ ﬂt(S,t—S,iE,y,Z)dS
0
t
:0+/ Bi(s,t —s,x,y, z)ds
0

Obviously:
Y:(0, 2,9, 2) /Bt —8,2,y,2)ds =0

Again, by differentiation with respect to ¢, we find that:

t
’Ytt(t7x7yuz) = Bt(t707x7y72) +/ Btt(87t_ S,.’I],y,Z)dS
0

Finally, by appropriate differentiations with respect to z, y, and z, we find
that:

(AY)(t, 2, y,2) = /0 (AB)(s,t — s,x,y, 2)ds

Now relations (4) and (5) yield conditions (o) and (e).
The General Solution of the Inhomogeneous Wave Equation

11° Let § be a complex valued function defined on R* and let f and g be
complex valued functions defined on R3. Let us solve the Inhomogeneous
Wave Equation:

(O) ’Ytt(taxayvz)_ (AFY)(taIayvz) :5(t,17,y72)
subject to the Initial Conditions:
(.) ’Y(vavyaz):f(xayvz)v "yt(O,.I,y,Z) :9(17,%2)

Actually, we need to say very little. One may obtain a solution v by adding
the solutions to the foregoing cases, displayed in articles 06° and 09°.



Uniqueness

12° In context of the foregoing article, let us consider two solutions v; and
2 of the Inhomogeneous Wave Equation (o), both of which meet the Initial
Conditions (e). Let v = 1 —~2. Obviously, 7 is a solution of the Homogeneous
Wave Equation:

%t(tw,% Z) - (AW)(tvxvyv Z) =0

and it satisfies the Initial Conditions:

~¥(0,z,y,2) =0, 7(0,2,y,2) =0
By article 2°, it is plain that 4 = 0. Hence, v = 0. Therefore, 7, = 7».
Rigour

13° In the foregoing articles, we have applied the Fourier Transform and the
operations of differentiation and integration in a manner somewhat cavalier.
We need to be more precise.

14° Let S be the complex linear space consisting of all smooth complex valued
functions:

h(z,y, z)

defined on R? which are are rapidly decreasing in x, y, and z. We mean to
say that, for any nonnegative integers p, a, b, and ¢, the function:

8a+b+c

(1 + .’II2 + y2 + Zz)pmh(fb, Y, Z)

defined on R? is bounded. In turn, let W be the complex linear space con-
sisting of all smooth complex valued functions:

y(t, z,y, 2)

defined on R* which are are rapidly decreasing in x, y, and z, locally uni-
formly in t. We mean to say that, for any finite interval U in R and for any
nonnegative integers p, £, a, b, and ¢, the restriction of the function:

8€+a+b+c

1422 402 4 2P
(o™ 4y + =) g raaga )|

t,r,y,2)
defined on R* to the set U x R3 is bounded.

15° For functions in S or W, the Fourier Transform and its inverse are well
defined.



16° Obviously, for each function v in W, the function:
Oy =y — Ay

also lies in W. Consequently, we may introduce the Wave Operator ], a
linear mapping carrying W to itself:

Oy (eW)
17° Now let K be the linear subspace of W defined by the following condition:

vyeK iff Oy=0

Of course, K is the kernel of []. With reference to articles 02° and 06°, we
may presume to introduce a linear mapping I' carrying S x S to K:

L(f,9)=~  ((fr9) €Sx8)

defined in terms of spherical means as follows:

y(t, 2y, 2)

=5 47rt2/ flx+tz,y +ty, 2 + t2)t*cos(0)dpdh

+ —2 // g(x +tZ,y + ty, z + t2)t*cos(0)depdo
4drt >

To justify the definition of I, we must show that ~ lies in W. It will follow,
by design, that « lies in K. To that end, let us observe that, for each function
hin S:

14

ot h(z +tz,y +ty,z + t2)

8a+b+c

YAl
N Z alble! Oxedybdze
a+b+c=~

h(z + tZ,y + ty, z + t2)T°g°Z¢
yrty Y

Let us also observe that:
(1+a2? +y* +2%)
<24 (z+t2)? 4 (y +t9)% + (2 + t2)2)[1 + (t2)? + (t7)* + (t2)?]

=201+ (z+tz)* + (y +t7)* + (2 + t2)%](1 + t?)



By applying these observations, one may show, rather easily, that v lies in
W. One may then verify that, in fact, I is bijective.

18° In turn, let L be the linear subspace of W defined by the following
condition:
vyeL iff (0,2,94,2) =0, %(0,2,y,2) =0

With reference to article 09°, we may presume to introduce a linear mapping
0 carrying W to L:
Od=~ (0 € W)

defined in terms of the intermediate function 3 as follows:

t

B(s,t,x,y,2) = P // 5(s,x +1Z,y + tg, z + t2)t>cos(0)dpdo
b

t
’y(t,ZC,y,Z)E/ B(Sat_saxayuz)ds
0

To justify the definition of [J, we must show that v lies in W. It will follow,
by design, that  lies in L and that [Jv = . To that end, we need only apply
the observations in the preceding article to show that the function:

a(s,t,x,y,z) = // 0(s,x +tZ,y + ty, z + tZ)cos(0)dpdo
b

defined on R? is rapidly decreasing in z, vy, and z, locally uniformly in s and
t. Of course, we mean to say that, for any finite intervals U and V in R and
for any nonnegative integers p, k, ¢, a, b, and ¢, the restriction of the function:

gh+t+atbte
OskOttdradydze

(1—|—x2—|—y2+z2)p a(s,t,x,y,z)
defined on R to the set U x V x R? is bounded. Now one may show, rather
easily, that ~ lies in W.

19° Let us emphasize that, in the current formal context, [J is a right inverse
for 0. That is:
O06=6 (6eW)

Moreover, the kernel K of [] and the range L of [J compose a direct sum
decomposition of W:
W=Ko®L

10



20° At this point, we may summarize the properties of the Wave Operator
O in the following diagram:

Retarded Potentials

21° Let us return to the particular solution of the Inhomogeneous Wave
Equation defined in article 09° but let us modify the definition as follows:

(%) v(t, x,y, 2 / B(s,t —s,x,y,2)ds

For now, we ignore the question whether the foregoing integral is well defined.
By the computations in article 10°, we find that, once again, « satisfies the
Inhomogeneous Wave Equation:

(O) ’Ytt(t, z,Y, Z) - (APY)(L z,Y, Z) = 6(t7 z,Y, Z)

However, it satisfies quite different Initial Conditions:

0 T,Y,z / ﬂ )y =S, T, Y, 2 )dS,
(e)
0 x,Y,z / ﬂt , 7S, T,Y, 2 )d

11



By a simple change of variables, we find that:

v(t, z,y, 2) /ﬁt—ssxy,)d

:/0 4752/ O(t — 5,0+ T,y + 57, 2 + 52)s° cos(0)ddd | ds

Let us convert Spherical Coordinates (sz, sy, sz) to Cartesian Coordinates
(u, v, w):
u=2x+ st =x+ scos(f)cos(¢)
y+ sy =y + scos(0)sin(¢)
w=z+ 8z =z+ssin(f)

v

We obtain:

(%) y(t, z,y, 2 /// =0(t = s, u,v, w)dudvdw
47T R3

where:

s= V- W+ -0+ (- w)

Now we can provide an interpretation of the function -, just described.
22° To that end, we note that the Event (¢ — s,u, v, w) occurs prior to the
Event (t,z,y,z), since t — s < t. Moreover, the two are separated in Time
and Space by a Null Interval:

(taxayvz) - (t—S,’U,,U,U)) = (S,I—’U,,y—’U,Z—U))

since:

s= V- W+ (- 07+ (- w)?

Hence, a light signal may pass from the former event to the latter, requiring
s light seconds to do so. Now, for a given time ¢, one calculates (¢, x,y, z) at
the position (z,y, z) by:

1
2
3

considering an arbitrary position (u, v, w)
calculating the travel time s from (u,v,w) to (x,y, 2)

calculating 6(t — s, u, v, w) at the retarded time t — s

~ o~~~
—_— N —

finally, calculating the integral

One refers to v as the Retarded Potential function for the Density function 4.

12



23° By a simple change of variables, we can present ~ in a different form,
more convenient to computation:

(%) v(t, x,y, 2) /// —0(t—s,x—u,y — v,z — w)dudvdw
47T R3

where:
s =Vu? 4+ 02 + w?

In this form for v, the variable s does not depend upon the variables x, y,
and z. As a result, one can compute the partial derivatives of v easily.

Rigour Redux (Incomplete)

24° Let us examine the foregoing definition of Retarded Potentials. Given a
Density function § defined on R*, we defined the function f:

B(s,t,x,y,2) = # / g §(s,x +tZ,y + tg, z + t2)t>cos(0)dpdd
on R® and the Retarded Potential function ~:
y(t, x,y, 2 / B(s,t —s,x,y,z)ds
/ Bt —s,s,2,y,2)ds

:/0 471'82/ 5(t — s,z + sT,y + sy, z + s2)s°cos(0)dedo | ds

/// —0(t — s,u, v, w)dudvdw
R3

u=2x+ ST =x+ scos(f)cos(¢)
v=y+ sy =y -+ scos()sin(d)

w=z+szZ=z+ssin(f)

on R*, where:

and:
s=V(—u)?+(y—v)?+(z —w)?
In turn:
y(t, x,y, 2) /// —0(t—s,x—u,y — v,z — w)dudvdw
47T R3
where:

s =Vu? + 2+ w?

13



Of the five integrals which figure in the definition of -y, we may say that if one
is well defined then, by transformation of variables, they are all well defined
and mutually equal. However, we can readily exhibit an instance of a function
0 in W for which none of the integrals is well defined:

O0(t,x,y,2) = oo

25° Let Wy be the linear subspace of W consisting of all density functions
0 such that the retarded potential function -~y is well defined. ............

14



