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The Homogeneous Wave Equation

01◦ Let f and g be complex valued functions defined on R3. We propose to
solve the Homogeneous Wave Equation:

(◦) γ tt(t, x, y, z)− (△γ)(t, x, y, z) = 0

subject to the Initial Conditions:

(•) γ(0, x, y, z) = f(x, y, z), γ t(0, x, y, z) = g(x, y, z)

Of course, γ is the complex valued function defined on R4, required to be
found. To be clear, we recall that:

(△γ)(t, x, y, z) ≡ γxx(t, x, y, z) + γyy(t, x, y, z) + γzz(t, x, y, z)

The Method of Fourier: Spherical Means

02◦ We pass to the Fourier Transform of γ:

(φ)

γ̂(t, u, v, w) =

∫∫∫

R3

e−i(ux+vy+wz)γ(t, x, y, z)m(dxdydz)

γ(t, x, y, z) =

∫∫∫

R3

e+i(ux+vy+wz)γ̂(t, u, v, w)m(dudvdw)

In the foregoing relations, we have adopted the following notational conven-
tion:

m(dudvdw) =
1

(2π)3/2
dudvdw, m(dxdydz) =

1

(2π)3/2
dxdydz

Clearly:

γtt(t, x, y, z) =

∫∫∫

R3

e+i(ux+vy+wz)γ̂tt(t, u, v, w)m(dudvdw)

−(△γ)(t, x, y, z) =
∫∫∫

R3

e+i(ux+vy+wz)(u2+v2+w2)γ̂(t, u, v, w)m(dudvdw)
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We obtain the following reformulation of equations (◦) and (•):

(◦) γ̂tt(t, u, v, w) + (u2+v2+w2)γ̂(t, u, v, w) = 0

(•) γ̂(0, u, v, w) = f̂(u, v, w), γ̂t(0, u, v, w) = ĝ(u, v, w)

Now γ̂ must take the form:

γ̂(t, u, v, w)

= f̂(u, v, w)cos(
√

u2+v2+w2 t)

+ ĝ(u, v, w)
1√

u2+v2+w2
sin(

√

u2+v2+w2 t)

Of course, we need to describe γ in terms of the form for γ̂.

03◦ To that end, let h be a complex valued function defined on R3, perhaps
f or g, and let ĥ be the Fourier Transform of h. Let µh and µ̂h be the complex
valued functions, related by the Fourier Transform, defined on R4 as follows:

(1)

µh(t, x, y, z) =

∫∫∫

R3

e+i(ux+vy+wz)µ̂h(t, u, v, w)m(dudvdw)

µ̂h(t, u, v, w) = ĥ(u, v, w)
1√

u2+ v2+w2 t
sin(

√

u2+v2+w2 t)

Obviously:

γ̂(t, u, v, w) =
∂

∂t
t µ̂f (t, u, v, w) + t µ̂g(t, u, v, w)

Consequently:

(∗) γ(t, x, y, z) =
∂

∂t
tµf (t, x, y, z) + tµg(t, x, y, z)

04◦ But we need to present µf and µg in a more perspicuous form. To that
end, we contend that:

(2)
1√

u2+v2+w2
sin(

√

u2+v2+w2) =
1

4π

∫∫

Σ

e+i(ux̄+vȳ+wz̄)cos(θ)dφdθ

where Σ is the unit sphere in R3 and where:

x̄ = cos(θ)cos(φ)

ȳ = cos(θ)sin(φ)

z̄ = sin(θ)
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For now, let us assume that relation (2) holds. [See article 07◦.]

05◦ Clearly, for any number t, we have:

1√
u2+v2+w2 t

sin(
√

u2+v2+w2 t) =
1

4πt2

∫∫

Σ

e+i(utx̄+vtȳ+wtz̄)t2cos(θ)dφdθ

(One should note that the function on the left is even in t and the integral on
the right is a real number.) Consequently:

µ̂h(t, u, v, w) = ĥ(u, v, w)
1

4πt2

∫∫

Σ

e+i(utx̄+vtȳ+wtz̄)t2cos(θ)dφdθ

so that:

(3)

µh(t, x, y, z) =

∫∫∫

R3

e+i(ux+vy+wz)µ̂h(t, u, v, w)m(dudvdw)

=
1

4πt2

∫∫

Σ

h(x+ tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

Clearly, µh(t, x, y, z) is the average value of h over the sphere of radius |t|
centered at (x, y, z).

06◦ One refers to µh as the Spherical Mean defined by h. Now we can present
the solution γ of the Wave Equation in terms of Spherical Means, as follows:

(∗)

γ(t, x, y, z)

=
∂

∂t

t

4πt2

∫∫

Σ

f(x+ tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

+
t

4πt2

∫∫

Σ

g(x+ tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

07◦ Finally, let us prove relation (2). For that purpose, let us introduce the
function φ :

φ(u, v, w) =
1

4π

∫∫

Σ

e+i(ux̄+vȳ+wz̄)cos(θ)dφdθ

which represents the right hand side of the relation. Obviously, φ is invariant
under rotations, so we may present φ as follows:

φ(u, v, w) = ψ(s) (0 < s =
√

u2+v2+w2)
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Moreover:

(△φ)(u, v, w) = − 1

4π

∫∫

Σ

(x̄2 + ȳ2 + z̄2)e+i(ux̄+vȳ+wz̄)cos(θ)dφdθ

= −φ(u, v, w)

so that:

ψ◦◦(s) +
2

s
ψ◦(s) = −ψ(s)

Under the transformation χ(s) = sψ(s), we find that:

χ◦◦(s) = −χ(s)

Consequently, there must be complex numbers α and β such that:

ψ(s) = α
1

s
cos(s) + β

1

s
sin(s)

However:
lim
s↓0

ψ(s) = 1

Therefore, α = 0, β = 1, and:

ψ(s) =
1

s
sin(s)

The proof of relation (2) is complete.

Energy

08◦ Let γ be a solution of the Homogeneous Wave Equation:

(◦) γ tt(t, x, y, z)− (△γ)(t, x, y, z) = 0

subject to the Initial Conditions:

(•) γ(0, x, y, z) = f(x, y, z), γ t(0, x, y, z) = g(x, y, z)

Let ǫ be the function defined on R4 as follows:

ǫ(t, x, y, z)

≡ 1

2

(

|γt(t, x, y, z)|2 + |γx(t, x, y, z)|2 + |γy(t, x, y, z)|2 + |γz(t, x, y, z)|2
)
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One refers to ǫ as the Energy Density. We contend that the corresponding
Energy Integral:

η(t) ≡
∫∫∫

R3

ǫ(t, x, y, z)m(dxdydz)

is constant. To prove the contention, we call upon several cases of Parseval’s
Relation:

∫∫∫

R3

|γt(t, x, y, z)|2m(dxdydz) =

∫∫∫

R3

|γ̂t(t, u, v, w)|2m(dudvdw)

∫∫∫

R3

|γx(t, x, y, z)|2 + |γy(t, x, y, z)|2 + |γz(t, x, y, z)|2m(dxdydz)

=

∫∫∫

R3

(u2 + v2 + w2)|γ̂(t, u, v, w)|2m(dudvdw)

From article 2◦, we recover the relations:

γ̂(t, u, v, w)

= f̂(u, v, w)cos(
√

u2+v2+w2 t)

+ ĝ(u, v, w)
1√

u2+v2+w2
sin(

√

u2+v2+w2 t)

γ̂t(t, u, v, w)

= −f̂(u, v, w)
√

u2+v2+w2sin(
√

u2+v2+w2 t)

+ ĝ(u, v, w)cos(
√

u2+v2+w2 t)

Let us write s for
√
u2 + v2 + w2, C for cos(st), and S for sin(st). Also, let

us drop display of the variables u, v, and w. Now we have:

|γ̂|2 = (f̂C + ĝ
1

s
S)(f̂C + ĝ

1

s
S)

|γ̂t|2 = (−f̂ sS + ĝC)(−f̂ sS + ĝC)

By straightforward computation, we find that:

|γ̂t|2 + s2|γ̂|2 = |ĝ|2 + s2|f̂ |2
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Hence:

2η(t) =

∫∫∫

R3

(

|γ̂t(t, u, v, w)|2 + (u2 + v2 + w2)|γ̂(t, u, v, w)|2
)

m(dudvdw)

=

∫∫∫

R3

(

|ĝ(u, v, w)|2 + (u2 + v2 + w2)|f̂(u, v, w)|2
)

m(dudvdw)

Obviously, η is constant. In fact:

(ǫ) η(t) =
1

2

∫∫∫

R3

(

|g(x, y, z)|2 + |(∇f)(x, y, z)|2
)

m(dxdydz)

A Particular Solution of the Inhomogeneous Wave Equation

09◦ Let δ be a complex valued function defined on R4. We propose to solve
the Inhomogeneous Wave Equation:

(◦) γ tt(t, x, y, z)− (△γ)(t, x, y, z) = δ(t, x, y, z)

subject to the particular Initial Conditions:

(•) γ(0, x, y, z) = 0, γ t(0, x, y, z) = 0

To that end, we introduce the complex valued function β defined on R5 as
follows:

β(s, t, x, y, z) ≡ t

4πt2

∫∫

Σ

δ(s, x + tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

With reference to our prior development of Spherical Means, we find that, for
each s:

(4) β tt(s, t, x, y, z)− (△β)(s, t, x, y, z) = 0

(5) β(s, 0, x, y, z) = 0, β t(s, 0, x, y, z) = δ(s, x, y, z)

In turn, let γ be the complex valued function defined on R4 as follows:

(∗) γ(t, x, y, z) ≡
∫ t

0

β(s, t− s, x, y, z)ds

Let us verify that γ satisfies the foregoing conditions (◦) and (•).
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10◦ We note first that:

γ(0, x, y, z) =

∫ 0

0

β(s,−s, x, y, z)ds = 0

By differentiation with respect to t, we find that:

γt(t, x, y, z) = β(t, 0, x, y, z) +

∫ t

0

βt(s, t− s, x, y, z)ds

= 0 +

∫ t

0

βt(s, t− s, x, y, z)ds

Obviously:

γt(0, x, y, z) =

∫ 0

0

βt(s,−s, x, y, z)ds = 0

Again, by differentiation with respect to t, we find that:

γtt(t, x, y, z) = βt(t, 0, x, y, z) +

∫ t

0

βtt(s, t− s, x, y, z)ds

Finally, by appropriate differentiations with respect to x, y, and z, we find
that:

(△γ)(t, x, y, z) =
∫ t

0

(△β)(s, t− s, x, y, z)ds

Now relations (4) and (5) yield conditions (◦) and (•).

The General Solution of the Inhomogeneous Wave Equation

11◦ Let δ be a complex valued function defined on R4 and let f and g be
complex valued functions defined on R3. Let us solve the Inhomogeneous
Wave Equation:

(◦) γ tt(t, x, y, z)− (△γ)(t, x, y, z) = δ(t, x, y, z)

subject to the Initial Conditions:

(•) γ(0, x, y, z) = f(x, y, z), γ t(0, x, y, z) = g(x, y, z)

Actually, we need to say very little. One may obtain a solution γ by adding
the solutions to the foregoing cases, displayed in articles 06◦ and 09◦.
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Uniqueness

12◦ In context of the foregoing article, let us consider two solutions γ1 and
γ2 of the Inhomogeneous Wave Equation (◦), both of which meet the Initial
Conditions (•). Let γ ≡ γ1−γ2. Obviously, γ is a solution of the Homogeneous
Wave Equation:

γtt(t, x, y, z)− (△γ)(t, x, y, z) = 0

and it satisfies the Initial Conditions:

γ(0, x, y, z) = 0, γt(0, x, y, z) = 0

By article 2◦, it is plain that γ̂ = 0. Hence, γ = 0. Therefore, γ1 = γ2.

Rigour

13◦ In the foregoing articles, we have applied the Fourier Transform and the
operations of differentiation and integration in a manner somewhat cavalier.
We need to be more precise.

14◦ Let S be the complex linear space consisting of all smooth complex valued
functions:

h(x, y, z)

defined on R3 which are are rapidly decreasing in x, y, and z. We mean to
say that, for any nonnegative integers p, a, b, and c, the function:

(1 + x2 + y2 + z2)p
∂a+b+c

∂xa∂yb∂zc
h(x, y, z)

defined on R3 is bounded. In turn, let W be the complex linear space con-
sisting of all smooth complex valued functions:

γ(t, x, y, z)

defined on R4 which are are rapidly decreasing in x, y, and z, locally uni-

formly in t. We mean to say that, for any finite interval U in R and for any
nonnegative integers p, ℓ, a, b, and c, the restriction of the function:

(1 + x2 + y2 + z2)p
∂ℓ+a+b+c

∂tℓ∂xa∂yb∂zc
γ(t, x, y, z)

defined on R4 to the set U ×R3 is bounded.

15◦ For functions in S or W, the Fourier Transform and its inverse are well
defined.
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16◦ Obviously, for each function γ in W, the function:

γ ≡ γtt −△γ

also lies in W. Consequently, we may introduce the Wave Operator , a
linear mapping carrying W to itself:

γ (γ ∈ W)

17◦ Now letK be the linear subspace ofW defined by the following condition:

γ ∈ K iff γ = 0

Of course, K is the kernel of . With reference to articles 02◦ and 06◦, we
may presume to introduce a linear mapping Γ carrying S× S to K:

Γ(f, g) ≡ γ ((f, g) ∈ S× S)

defined in terms of spherical means as follows:

γ(t, x, y, z)

≡ ∂

∂t

t

4πt2

∫∫

Σ

f(x+ tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

+
t

4πt2

∫∫

Σ

g(x+ tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

To justify the definition of Γ, we must show that γ lies in W. It will follow,
by design, that γ lies in K. To that end, let us observe that, for each function
h in S:

∂ℓ

∂tℓ
h(x + tx̄, y + tȳ, z + tz̄)

=
∑

a+b+c=ℓ

ℓ !

a !b !c !

∂a+b+c

∂xa∂yb∂zc
h(x+ tx̄, y + tȳ, z + tz̄)x̄aȳbz̄c

Let us also observe that:

(1+x2 + y2 + z2)

≤ 2[1 + (x+ tx̄)2 + (y + tȳ)2 + (z + tz̄)2][1 + (tx̄)2 + (tȳ)2 + (tz̄)2]

= 2[1 + (x+ tx̄)2 + (y + tȳ)2 + (z + tz̄)2](1 + t2)
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By applying these observations, one may show, rather easily, that γ lies in
W. One may then verify that, in fact, Γ is bijective.

18◦ In turn, let L be the linear subspace of W defined by the following
condition:

γ ∈ L iff γ(0, x, y, z) = 0, γt(0, x, y, z) = 0

With reference to article 09◦, we may presume to introduce a linear mapping
carrying W to L:

δ ≡ γ (δ ∈ W)

defined in terms of the intermediate function β as follows:

β(s, t, x, y, z) ≡ t

4πt2

∫∫

Σ

δ(s, x + tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

γ(t, x, y, z) ≡
∫ t

0

β(s, t− s, x, y, z)ds

To justify the definition of , we must show that γ lies in W. It will follow,
by design, that γ lies in L and that γ = δ. To that end, we need only apply
the observations in the preceding article to show that the function:

α(s, t, x, y, z) ≡
∫∫

Σ

δ(s, x+ tx̄, y + tȳ, z + tz̄)cos(θ)dφdθ

defined on R5 is rapidly decreasing in x, y, and z, locally uniformly in s and
t. Of course, we mean to say that, for any finite intervals U and V in R and
for any nonnegative integers p, k, ℓ, a, b, and c, the restriction of the function:

(1 + x2 + y2 + z2)p
∂k+ℓ+a+b+c

∂sk∂tℓ∂xa∂yb∂zc
α(s, t, x, y, z)

defined on R5 to the set U × V ×R3 is bounded. Now one may show, rather
easily, that γ lies in W.

19◦ Let us emphasize that, in the current formal context, is a right inverse
for . That is:

δ = δ (δ ∈ W)

Moreover, the kernel K of and the range L of compose a direct sum
decomposition of W:

W = K⊕ L
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20◦ At this point, we may summarize the properties of the Wave Operator
in the following diagram:

L

K

W W

Retarded Potentials

21◦ Let us return to the particular solution of the Inhomogeneous Wave
Equation defined in article 09◦ but let us modify the definition as follows:

(⋆) γ(t, x, y, z) ≡
∫ t

−∞

β(s, t− s, x, y, z)ds

For now, we ignore the question whether the foregoing integral is well defined.
By the computations in article 10◦, we find that, once again, γ satisfies the
Inhomogeneous Wave Equation:

(◦) γ tt(t, x, y, z)− (△γ)(t, x, y, z) = δ(t, x, y, z)

However, it satisfies quite different Initial Conditions:

(•)
γ(0, x, y, z) =

∫ 0

−∞

β(s,−s, x, y, z)ds,

γ t(0, x, y, z) =

∫ 0

−∞

βt(s,−s, x, y, z)ds
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By a simple change of variables, we find that:

γ(t, x, y, z) =

∫ ∞

0

β(t− s, s, x, y, z)ds

=

∫ ∞

0

[ s

4πs2

∫∫

Σ

δ(t− s, x+ sx̄, y + sȳ, z + sz̄)s2cos(θ)dφdθ
]

ds

Let us convert Spherical Coordinates (sx̄, sȳ, sz̄) to Cartesian Coordinates
(u, v, w):

u ≡ x+ sx̄ = x+ s cos(θ)cos(φ)

v ≡ y + sȳ = y + s cos(θ)sin(φ)

w ≡ z + sz̄ = z + s sin(θ)

We obtain:

(⋆) γ(t, x, y, z) =
1

4π

∫∫∫

R3

1

s
δ(t− s, u, v, w)dudvdw

where:
s ≡

√

(x− u)2 + (y − v)2 + (z − w)2

Now we can provide an interpretation of the function γ, just described.

22◦ To that end, we note that the Event (t − s, u, v, w) occurs prior to the
Event (t, x, y, z), since t − s < t. Moreover, the two are separated in Time
and Space by a Null Interval:

(t, x, y, z)− (t− s, u, v, w) = (s, x− u, y − v, z − w)

since:
s ≡

√

(x− u)2 + (y − v)2 + (z − w)2

Hence, a light signal may pass from the former event to the latter, requiring
s light seconds to do so. Now, for a given time t, one calculates γ(t, x, y, z) at
the position (x, y, z) by:

(1) considering an arbitrary position (u, v, w)

(2) calculating the travel time s from (u, v, w) to (x, y, z)

(3) calculating δ(t− s, u, v, w) at the retarded time t− s

(4) finally, calculating the integral

One refers to γ as the Retarded Potential function for the Density function δ.
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23◦ By a simple change of variables, we can present γ in a different form,
more convenient to computation:

(⋆) γ(t, x, y, z) =
1

4π

∫∫∫

R3

1

s
δ(t− s, x− u, y − v, z − w)dudvdw

where:
s ≡

√

u2 + v2 + w2

In this form for γ, the variable s does not depend upon the variables x, y,
and z. As a result, one can compute the partial derivatives of γ easily.

Rigour Redux (Incomplete)

24◦ Let us examine the foregoing definition of Retarded Potentials. Given a
Density function δ defined on R4, we defined the function β:

β(s, t, x, y, z) ≡ t

4πt2

∫∫

Σ

δ(s, x + tx̄, y + tȳ, z + tz̄)t2cos(θ)dφdθ

on R5 and the Retarded Potential function γ:

γ(t, x, y, z) ≡
∫ t

−∞

β(s, t− s, x, y, z)ds

=

∫ ∞

0

β(t− s, s, x, y, z)ds

=

∫ ∞

0

[ s

4πs2

∫∫

Σ

δ(t− s, x+ sx̄, y + sȳ, z + sz̄)s2cos(θ)dφdθ
]

ds

=
1

4π

∫∫∫

R3

1

s
δ(t− s, u, v, w)dudvdw

on R4, where:
u ≡ x+ sx̄ = x+ s cos(θ)cos(φ)

v ≡ y + sȳ = y + s cos(θ)sin(φ)

w ≡ z + sz̄ = z + s sin(θ)

and:
s ≡

√

(x− u)2 + (y − v)2 + (z − w)2

In turn:

γ(t, x, y, z) =
1

4π

∫∫∫

R3

1

s
δ(t− s, x− u, y − v, z − w)dudvdw

where:
s =

√

u2 + v2 + w2
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Of the five integrals which figure in the definition of γ, we may say that if one
is well defined then, by transformation of variables, they are all well defined
and mutually equal. However, we can readily exhibit an instance of a function
δ in W for which none of the integrals is well defined:

δ(t, x, y, z) ≡ ......

............

25◦ Let W0 be the linear subspace of W consisting of all density functions
δ such that the retarded potential function γ is well defined. ............
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