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0 Introduction

1◦ The object of this brief text is to develop the Calculus. The basic players
are Numbers and Functions, the basic actions are Differentiation and Integra-
tion, and the basic result is the Fundamental Theorem. From these roots
spring applications of astonishing variety. For an example, we sketch the
explanation of the Rainbow by René Descartes (1637a).

2◦ For style, we adopt a spare, relentlessly formal tone. In this way, we
hope to encourage in young students that cheerfully implacable attitude of
mind which is characteristic of the serious study of Mathematics.

3◦ In the last section, we have compiled problems which will provide practice
and encourage reflection.
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1 Real Numbers

4◦ The concept of Real Number derives from the actions of counting and
measuring. By common experience with such actions, we are led to introduce
numbers such as:

1, 2,
5
2
,
√

7, π, . . .

These are instances of real numbers. We are also led to combine two numbers
in the form of a sum or a product :

5
2

+
√

7,
√

7π

These are instances of the Operations of Addition and Multiplication. Finally,
we are led to relate two numbers:

5
2
< π

This is an instance of the Relation of Order. Let us gather together all the
real numbers into one set:

R
and let us describe a crafted array of properties for Addition, Multiplica-
tion, and Order on the set R. These properties are sufficient to produce all
other properties by logical inference. They are the hypotheses from which we
develop the Calculus.

Addition and Multiplication

5◦ Given any numbers x and y in R, let us write:

x+ y and x× y

to stand for the sum and the product of x and y. We assume first that:

(•) for any numbers x and y in R, x+ y = y + x and x× y = y × x
(•) for any numbers x, y, and z in R, (x + y) + z = x + (y + z) and

(x× y)× z = x× (y × z)
(•) for any numbers x, y, and z in R, x× (y + z) = (x× y) + (x× z)

One refers to these properties as the Laws of Commutation, Association, and
Distribution. We assume second that:

(•) there exist numbers 0 and 1 in R such that, for any number x in
R, 0 + x = x and 1× x = x; moreover, 0 �= 1
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One can show that the indicated numbers 0 and 1 in R are unique. One refers
to 0 and 1 as the neutral numbers in R for addition and multiplication and
one calls them zero and one. We assume third that:

(•) for any number x in R, there exists a number y in R such that
x+ y = 0

One can show that, for any number x in R, the indicated number y in R is
unique. One refers to y as the additive inverse of x and one denotes it by −x.
Noting the symmetric relation between x and y, one may infer that not only
−x = y but also −y = x, which is to say that −(−x) = x. For any numbers
x and y in R, one defines:

x− y := x+ (−y)

and one refers to x− y as the difference between x and y. At this point, one
can prove the following properties:

(1) for any number x in R, if x+ x = x then x = 0

(2) for any number x in R, 0× x = 0 and (−1)× x = −x
(3) for any numbers x and y in R, −(x+ y) = (−x)+ (−y), −(x− y) =

y − x, (−x)× y = −(x× y), and (−x)× (−y) = x× y

We assume fourth that:

(•) for any number x in R, if x �= 0 then there exists a number y in R
such that x× y = 1

One can show that, for any number x in R, if x �= 0 then the indicated number
y in R is unique. One refers to y as the multiplicative inverse of x and one
denotes it by x−1. By property (2), x−1 �= 0. Noting the symmetric relation
between x and y, one may infer that not only x−1 = y but also y−1 = x,
which is to say that (x−1)−1 = x. For any numbers x and y in R, if y �= 0
then one defines:

x/y ≡ x

y
:= x× y−1

and one refers to x/y as the quotient of x and y. Now one can prove the
following properties:

(4) for any number x in R, if x× x = x then x = 0 or x = 1

(5) for any numbers x and y in R, if x �= 0 and y �= 0 then x× y �= 0,
(x× y)−1 = x−1× y−1, and (x/y)−1 = y/x
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Order

6◦ Given any numbers x and y in R, let us write:

x < y

to state that x is less than y. We assume fifth that:

(•) for any number x in R, x �< x

(•) for any numbers x and y in R, if x < y then y �< x

(•) for any numbers x, y, and z in R, if x < y and y < z then x < z

(•) for any numbers x and y in R, if x �= y then x < y or y < x

With reference to the first of the foregoing conditions, one says that the order
relation on R is antireflexive; to the second, antisymmetric; to the third,
transitive; to the fourth, linear . We assume sixth that:

(•) for any numbers x, y, and z in R, if x < y then x+ z < y + z

(•) for any numbers x, y, and z in R, if x < y and z < 0 then y × z <
x× z

(•) for any numbers x, y, and z of X , if x < y and 0 < z then x× z <
y × z

In this context, one can readily show that:

(6) for any numbers x and y in R, if 0 < x and 0 < y then 0 < x + y
and 0 < x× y

(7) for any numbers x and y in R, x < y iff 0 < y − x
(8) −1 < 0 < 1

(9) for any numbers x and y in R, if 0 < x < y then 0 < y−1 < x−1

In particular, if 0 < 1 < y then 0 < y−1 < 1.

7◦ For convenience of expression, let us write x ≤ y to mean that x < y or
x = y.

8◦ One denotes the subset of R consisting of all numbers x for which x < 0
byR− and one refers to the numbers inR− as negative. Similarly, one denotes
the subset of R consisting of all numbers x for which 0 < x by R+ and one
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refers to the numbers in R+ as positive. Clearly, the sets R−, {0}, and R+

comprise a partition of R:

R = R− ∪ {0} ∪ R+

Of course, for any number x in R, x ∈ R+ iff −x ∈ R−.

Absolute Value

9◦ For any number x in R, one defines the absolute value of x as follows:

|x| :=
{−x if x < 0

0 if x = 0
x if 0 < x

Obviously, 0 ≤ |x|, |x| = 0 iff x = 0, and |−x| = |x|. By checking cases, one
can show that:

(10) for any numbers x and y in R, |x× y| = |x| × |y|
(11) for any numbers x and y in R, |x+ y| ≤ |x|+ |y|

Noting |y| = |x+(y−x)| ≤ |x|+ |y−x| and |x| = |y+(x− y)| ≤ |y|+ |x− y|,
one may infer that:

(12) for any numbers x and y in R, | |x| − |y| | ≤ |x− y|

The Completeness Principles

10◦ Now letX be any subset ofR. One says thatX admits a smallest number
iff there is a number a in X such that, for each number x in X , a ≤ x. Such a
number a in X would be unique, if it exists. It would of course be the smallest
number in X . In turn, one says that X admits a largest number iff there is a
number b in X such that, for each number x in X , y ≤ b. Such a number b
in X would be unique, if it exists. It would of course be the largest number
in X . Let z be any number in R. One says that z is a lower bound for X iff,
for each number x in X , z ≤ x. In turn, one says that z is an upper bound
for X iff, for each number x in X , x ≤ z. We shall denote by X∗ and by X∗

the subsets of R consisting of all lower bounds for X and of all upper bounds
for X , respectively. Of course, either X∗ or X∗ may be empty. We assume
finally that the following conditions hold:

(GLB) for any subset X of R, if X �= ∅ and X∗ �= ∅ then X∗ admits a
largest number

(LUB) for any subset X of R, if X �= ∅ and X∗ �= ∅ then X∗ admits a
smallest number
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One refers to condition (GLB) as the Greatest Lower Bound Principle and
to condition (LUB) as the Least Upper Bound Principle for R. They are the
Completeness Principles. The basic theorems of the Calculus depend upon
these principles for proof.

11◦ Actually, the two principles are logically equivalent. That is, (GLB) is
true iff (LUB) is true. To prove the equivalence, we proceed as follows. Let X
be any subset of R and let −X be the subset of R consisting of all numbers
of the form −x, where x is any number in X . Of course, −(−X) = X .
Obviously, X �= ∅ iff −X �= ∅. Moreover, (−X)∗ = −X∗, so X∗ �= ∅ iff
(−X)∗ �= ∅. Finally, for any number z in R, z is the largest number in X∗ iff
−z is the smallest number in (−X)∗. These observations entail that (GLB)
is true iff (LUB) is true. �

Integers

12◦ Let Y be any subset of R. Let us say that Y is inductive iff 1 ∈ Y and,
for any number y in R, if y ∈ Y then y + 1 ∈ Y . Let Y be the family of
all inductive subsets of R. Clearly, R+ ∈ Y. Hence, Y is not empty. Let
Z+ := ∩Y. Clearly, Z+ ∈ Y. One may say that Z+ is the smallest among all
inductive subsets of R. In particular, Z+ ⊆ R+. One refers to the numbers
j in Z+ as positive integers .

13◦ Let Z− := −Z+. One refers to the numbers j in Z− as negative integers .
Let:

Z := Z− ∪ {0} ∪ Z+

One refers to the numbers j in Z simply as integers .

Notation

14◦ Let x, y, and z be any numbers in R and let j be any integer in Z. From
now on, we usually write:

x · y or simply xy

instead of x× y. If 2 ≤ j then we write:

zj

instead of z × z × · · · × z, where z occurs j times. We interpret z0 to be
1 and z1 to be z. If z �= 0 and j < 0 then we write zj instead of (z−1)−j .
Finally, if 0 ≤ j then we write j! for the factorials:

0! := 1, 1! := 1, 2! := 2, 3! := 6, 4! := 24, 5! := 120, 6! := 720, . . .
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Mathematical Induction

15◦ Let us explain the relation between Z+ and the widely applied method
of argument called Mathematical Induction. One begins with a statement:

Sk

depending upon the integer k in Z+. For example:

Sk : the sum of the squares of all integers j in Z+ for which 1 ≤ j ≤ k
equals k(k + 1)(2k + 1)/6 · · · briefly:

k∑
j=1

j2 =
1
6
k(k + 1)(2k + 1)

Visibly, there are infinitely many such statements:

S1, S2, S3, S4, S5, . . .

One wishes to prove them all but, of course, one cannot do so by proving
them one at a time. Rather, one applies Mathematical Induction to achieve
the effect, in two strokes. Specifically, one proves that the following two
statements are true:

(MI.1) S1

(MI.2) for any positive integer k, IF Sk is true THEN Sk+1 is true

One then asserts that all the foregoing statements are true. To defend the
assertion, one introduces the subset Y of Z+ consisting of all positive integers
k such that Sk is true, one notes that statements (MI.1) and (MI.2) mean
that Y is inductive, and one affirms that Y = Z+.

16◦ Let us illustrate argument by Mathematical Induction by proving the
following basic fact:

(13) for any integers j and k in Z, j + k and j × k are integers in Z

By property (3), we may restrict our attention to positive integers. Let k be
any positive integer. Let Ak and Mk be the statements:

Ak : for any positive integer j, j + k is a positive integer

Mk : for any positive integer j, j × k is a positive integer
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Obviously, A1 is true. Moreover, for any positive integers j and k:

j + (k + 1) = (j + k) + 1

Hence, if Ak is true then Ak+1 is true. By Mathematical Induction, all the
statements Ak are true. Obviously, M1 is true. Moreover, for any positive
integers j and k:

j × (k + 1) = (j × k) + j

Hence, if Mk is true then Mk+1 is true, because Aj is true. By Mathematical
Induction, all the statements Mk are true. We conclude that, for any positive
integers j and k, j + k and j × k are positive integers. �

The Least and Greatest Integer Principles

17◦ Let X be the subset of R consisting of all numbers x for which 1 ≤ x.
Clearly, X is inductive. Hence, Z+ ⊆ X . We conclude that 1 is the smallest
integer in Z+.

18◦ Now let us prove the following fundamental properties of Z:

(LI) for any subset Y of Z, if Y �= ∅ and Y∗ �= ∅ then Y admits a
smallest integer

(GI) for any subset Y of Z, if Y �= ∅ and Y ∗ �= ∅ then Y admits a
largest integer

Let Y be any subset of Z such that Y �= ∅ and Y∗ �= ∅. By the Greatest Lower
Bound Principle, we can introduce the largest number b in Y∗. We contend
that b ∈ Y . Let us suppose, to the contrary, that b �∈ Y . Since b+ 1 �∈ Y∗, we
could introduce an integer j in Y such that b < j < b+ 1. Since j �∈ Y∗, we
could, in turn, introduce an integer k in Y such that b < k < j < b + 1. We
would infer that j − k ∈ Z+ and 0 < j − k < 1, contradicting the fact that 1
is the smallest integer in Z+. Hence, b ∈ Y , so that b is the smallest integer
in Y . We conclude that (LI) is true. In similar manner, one can prove that
(GI) is true. �

19◦ One refers to property (LI) as the Least Integer Principle and to property
(GI) as the Greatest Integer Principle for Z.

The Principle of Archimedes

20◦ We contend that Z∗ = ∅. Let us suppose, to the contrary, that Z∗ �= ∅.
By the Least Upper Bound Principle, we could introduce the smallest number
a in Z∗. Since a−1 /∈ Z∗, we could then introduce a number k in Z such that
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a− 1 < k. It would follow that k+1 ∈ Z and that a < k+1, in contradiction
to the definition of a. Hence, Z∗ = ∅. One calls this conclusion the Principle
of Archimedes :

(14) for any number x in R, there is some integer j in Z such that
x < j

It follows that, for any number y in R, if 0 < y then there is some integer k
in Z+ such that 0 < y−1 < k, hence 0 < k−1 < y. See property (9).

21◦ By similar argument, one can show that Z∗ = ∅, hence that, for any
number y in R, there is some integer k in Z such that k < y.

Rationals

22◦ Let Q be the subset of R consisting of all numbers of the form:

j/k ≡ j

k

where j and k are any integers in Z for which k �= 0. One refers to the
numbers in Q as rationals . One can easily prove that:

(15) for any rationals r and s in Q, r + s and r · s are rationals in Q

In fact:
j

k
+

�

m
=
j ·m+ k · �

k ·m
and:

j

k
· �
m

=
j · �
k ·m

where j, k, �, and m are any integers in Z for which k �= 0 and m �= 0.

23◦ Of course, we have the now familiar partition of Q:

Q = Q− ∪ {0} ∪ Q+

where Q− consists of the negative rationals and where Q+ consists of the
positive rationals.

24◦ Let us prove the following basic property of Q:

(16) for any numbers x and y in R, if x < y then there is a rational r
in Q such that x < r < y
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Of course, 0 < y − x. By the Principle of Archimedes, we can introduce an
integer k in Z+ such that k−1 < y − x. Clearly:

1 < ky − kx

Let Y be the subset of Z consisting of all integers � for which kx < �. By
the Principle of Archimedes, Y �= ∅. Obviously, kx is a lower bound for Y , so
Y∗ �= ∅. By the Least Integer Principle, we can introduce the smallest integer
j in Y . Clearly:

j − 1 ≤ kx < j

Hence, j < ky. Therefore:

x <
j

k
< y

Now we can take r to be j/k. �

25◦ With reference to property (16), one says that Q is dense in R.

Irrationals

26◦ Let I be the subset of R complementary to Q:

I := R\Q

One refers to the numbers in I as irrationals . Let us prove that:

(17) for any numbers x and y in R, if x < y then there is an irrational
z in I such that x < z < y

That is, let us prove that I is dense in R. For that purpose, we need only
prove that:

I ∩ R+ �= ∅
Let us assume for the moment that we have done so. Let z̄ be any number
in I ∩ R+. Let x and y be any numbers in R such that x < y. By property
(16), we can introduce a rational number r in Q such that x < r < y. Let k
be an integer in Z+ such that z̄/k < y− r. Let z := r+ (z̄/k). Clearly, z ∈ I
and x < z < y. We conclude that I is dense in R.

27◦ Now let us proceed to prove that I ∩ R+ �= ∅. For that purpose, let us
introduce the subset X of Q+ consisting of all positive rationals r for which
r2 < 2. Obviously, X �= ∅ and X∗ �= ∅. By the Least Upper Bound Principle,
we can introduce the smallest number z in X∗. Obviously, 0 < z. Let us
prove that z2 = 2. To that end, let us suppose that z2 < 2. Under this
supposition, we could introduce the positive number v := 2− z2. In turn, we
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could introduce a positive number u such that u < 1 and u(2z + 1) < v. We
would find that (z+ u)2 = z2 + 2zu+ u2 = z2 + u(2z+ u) < z2 + u(2z+ 1) <
z2 + v = 2. By property (16), we could introduce a rational number r such
that z < r < z + u. It would follow that r2 < 2. Hence, r ∈ X but z < r.
By this contradiction, we conclude that 2 ≤ z2. Let us suppose that 2 < z2.
Under this supposition, we could introduce the positive number v := z2 − 2.
In turn, we could introduce a positive number u such that 2uz < v. We would
find that 2 = z2 − v < z2 − 2uz < z2 − 2zu + u2 = (z − u)2. Of course, for
any r in X , r2 < 2 < (z−u)2, so r < z−u. Hence, z−u ∈ X∗ but z−u < z.
By this contradiction, we conclude that z2 = 2.

28◦ For any positive numbers z1 and z2 inR, if z2
1 = z2

2 then z1 = z2, because
0 = z2

1 − z2
2 = (z1 − z2)(z1 + z2). See property (5) in article 2◦. Let us adopt

the conventional notation:
z =
√

2

29◦ Finally, let us prove the ancient and profoundly significant fact that
√

2
is irrational. To that end, let Y be the subset of Z+ consisting of all positive
integers j for which there exists some positive integer k such that:

√
2 =

j

k

Let us suppose that Y �= ∅. By the Least Integer Principle, we could introduce
the smallest integer j◦ in Y . In turn, by definition, we could introduce a
positive integer k◦ such that

√
2 = j◦/k◦. Obviously, j2◦ = 2k2◦. Hence, j◦

would be even. See the following article. We could introduce a positive integer
j• such that j◦ = 2j•. Obviously, k2

◦ = 2j2• . Hence, k◦ would be even. We
could introduce a positive integer k• such that k◦ = 2k•. We would find that
j2• = 2k2

• and so: √
2 =

j•
k•

Hence, j• ∈ Y but j• < j◦. By this contradiction, we infer that Y = ∅. We
conclude that

√
2 is irrational. �

30◦ Let j be any integer in Z. We say that j is even iff there is some integer
� in Z such that j = 2�. We say that j is odd iff there is some integer � in
Z such that j = 2� + 1. By Mathematical Induction, one can easily prove
that, for any integer j in Z, j is even or odd. Obviously, it cannot be both.
Moreover, j is even iff j2 is even and j is odd iff j2 is odd.
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Integral and Fractional Parts

31◦ Let x be any number in R. Let Y be the subset of Z consisting of all
integers j such that j ≤ x. Clearly, Y �= ∅ and Y ∗ �= ∅. By the Greatest
Integer Principle, we can introduce the largest integer k in Y . Obviously,
k ≤ x < k+ 1, so 0 ≤ x− k < 1. One refers to k as the integral part of x and
one denotes it by [x]. One refers to x− k as the fractional part of x and one
denotes it by (x). Obviously:

x = [x] + (x), [x] ∈ Z, 0 ≤ (x) < 1

Representation of Numbers in Base b

32◦ Let b be any integer for which 2 ≤ b. We refer to b as the base. Let D
be the subset of Z consisting of all integers d such that 0 ≤ d < b. We refer
to the integers in D as the digits . In turn, let:

. . . , δk, . . . , δ−3, δ−2, δ−1, δ0, δ1, δ2, δ3, . . . , δ�, . . .

be any series of digits, indexed by the integers. Let δ stand for the series just
displayed. For every integer j, we refer to δj as the j-th term of δ. Let ∆
be the subset of Z consisting of all integers k such that, for every integer �,
if k < � then δ� = 0. It may happen that ∆ = ∅. Let us exclude that case
from consideration. In effect, we accept only those series’ δ which terminate
to the right in 0. It may happen that ∆∗ = ∅. In that case, δ would be trivial,
in the sense that all the terms would equal 0. Let us exclude that case from
consideration, as well. By these exclusions, we are justified to introduce the
smallest integer in ∆. Let us denote it by |δ|. Obviously:

δ|δ| �= 0

and, for any integer j, if |δ| < j then δj = 0. Finally, it may happen that
there is some integer � such that, for every integer k, if k < � then δk = b− 1.
Let us exclude that case from consideration. In effect, we reject those series’
which terminate to the left in b−1. For later reference, let us say that a series
of digits is normal iff it survives the foregoing exclusions, which is to say that
it is nontrivial, it terminates to the right in 0, and it does not terminate to
the left in b− 1. For such a series, we will show that the expression:

|δ|∑
j=−∞

δjb
j = · · · + δ−2b

−2 + δ−1b
−1 + δ0 + δ1b

1 + δ2b
2 + · · · + δ|δ|b|δ|

represents a positive number x.
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33◦ Let δ be a normal series of digits. Let (δ) and [δ] be the fractional and
integral parts of δ, defined as follows:

(δ) : (δ)j =
{
δj if j < 0
0 if 0 ≤ j

and:

[δ] : [δ]j =
{

0 if j < 0
δj if 0 ≤ j

Obviously, if not trivial then (δ) and [δ] are normal. Let us justify represen-
tation of the number (x) by (δ):

(x) = · · · + δ−3b
−3 + δ−2b

−2 + δ−1b
−1

and of the number [x] by [δ]:

[x] = δ0 + δ1b
1 + δ2b

2 + · · · + δ|δ|b|δ|

For [x], we note that the summation is finite and that [x] is a nonnegative
integer. It requires no explanation. For (x), we note that, for any negative
integer j:

0 ≤ δjbj + · · · + δ−3b
−3 + δ−2b

−2 + δ−1b
−1

≤ (b− 1)bj + · · · + (b − 1)b−3 + (b− 1)b−2 + (b − 1)b−1

= (b− 1)bj(1 + b+ b2 + · · · + b−j−1)

= (b− 1)bj(b−j − 1)(b− 1)−1

= 1− bj
< 1

Let X be the subset of R consisting of all numbers of the form:

δjb
j + · · · + δ−3b

−3 + δ−2b
−2 + δ−1b

−1

where j is any negative integer. Obviously, X �= ∅ and 1 ∈ X∗. We are led
to interpret (x) as the smallest number in X∗. Since δ does not terminate to
the left in b − 1, we can introduce a negative integer k such that δk ≤ b − 2.
Clearly, 1− bk ∈ X∗. We infer that:

0 ≤ (x) ≤ 1− bk < 1

Now we are justified to present x as the following sum:

x = [x] + (x)

Obviously, 0 < [x] or 0 < (x). Hence, 0 < x.
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34◦ In turn, let δ′ and δ′′ be any two normal series’ of digits. Let x′ and x′′

be the positive numbers represented by δ′ and δ′′, respectively. Let ∆ be the
subset of Z consisting of all integers j such that δ′j �= δ′′j . Since δ′ and δ′′

terminate to the right in 0, ∆∗ �= ∅. Let δ′ and δ′′ be distinct, so that ∆ �= ∅.
Let � be the largest integer in ∆. Let us write:

δ′ < δ′′

to express the condition that δ′� < δ′′� . Now let us assume that δ′ < δ′′. We
will show that x′ < x′′. Since δ′ does not terminate to the left in b − 1, we
can introduce an integer k such that δ′k ≤ b − 2. We find that:

k−1∑
j=−∞

δ′jb
j + δ′kb

k +
�−1∑

j=k+1

δ′jb
j + δ′�b

�

<

�−1∑
j=−∞

(b− 1)bj + δ′�b
�

= b� + δ′�b
�

≤ δ′′� b
�

Hence, x′ < x′′.

35◦ Finally, let x be any positive number. We will show that there is a normal
series δ of digits which represents x. Let ∆ be the subset of Z consisting of
all integers j such that bj ≤ x. Clearly, ∆ �= ∅ and ∆∗ �= ∅. Let � be the
largest integer in ∆, so that b� ≤ x < b�+1. In turn, let d be the largest digit
in D such that db� ≤ x. Obviously, 1 ≤ d and:

db� ≤ x < (d+ 1)b�

so that:
0 ≤ x− db� < b�

At this point, we specify δ in part, as follows:

δj =
{
d if � = j
0 if � < j

If x = db� then we complete the specification of δ, as follows:

δj = 0 if j<�
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If not, then we form the subset Γ of Z consisting of all integers j such that
bj ≤ x − d b�. Clearly, Γ �= ∅ and Γ∗ �= ∅. Let k be the largest integer in Γ.
Obviously, k < � and bk ≤ x − db� < bk+1. In turn, let c be the largest digit
in D such that cbk ≤ x− db�. Obviously, 1 ≤ c and:

cbk ≤ x− db� < (c+ 1)bk

so that:
0 ≤ x− (db� + cbk) < bk

We continue the specification δ, as follows:

δj =
{
c if k = j
0 if k < j < �

Applying the foregoing pattern recursively, we may proceed to specify δ com-
pletely. So specified, δ is nontrivial and it terminates to the right in 0. We
contend that it does not terminate to the left in b− 1. Let us suppose, to the
contrary, that there is an integer j such that, for any integer i, if i < j then
δi = b− 1. We would find that:

x−
�∑

i=j

δib
i =

j−1∑
i=−∞

(b− 1)bi = bj

contradicting the specification of δj . Hence, δ is normal. By design, for any
integer j, if j ≤ � then:

δjb
j ≤ x−

�∑
i=j+1

δib
i < (δj + 1)bj

so that:

0 ≤ x−
�∑

i=j

δib
i < bj

Therefore, δ represents x. �

36◦ By the foregoing articles, we obtain a bijective relation between normal
series’ δ of digits and positive numbers x:

x =
|δ|∑

j=−∞
δjb

j

= · · · + δ−2b
−2 + δ−1b

−1 + δ0 + δ1b
1 + δ2b

2 + · · · + δ|δ|b|δ|

= δ|δ|δ|δ|−1 · · · δ3δ2δ1δ0 • δ−1δ−2δ−3δ−4 · · ·
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The “point” • marks the break between the integral part and the fractional
part of x. Of course, one sets the base b in advance. One refers to δ as the
base b representation of x.

The Real Line

37◦ One can visualize many of the properties of R by means of a diagram,
called the Real Line:

R

5/2 π

−3 −2 −1 0 1 2 3

Figure 1: The Real Line

However, for our development of the Calculus, we will not substitute naive
properties of the diagram for careful reasoning from the basic hypotheses.

16



2 Functions

1◦ The object of this section is to introduce the basic concepts of Interval
and Function. In preparation for subsequent sections, we isolate several other
related concepts.

Intervals

2◦ Let X be any subset of R. Let us say that X is an interval in R iff, for
any numbers x, y, and z in R, if x ∈ X , y ∈ X , and x < z < y then z ∈ X .
Just as well, we may say that X satisfies the Intermediate Value Property.
We contend that if X is an interval in R then it must fall into one of eleven
types. The first two types are comprised of the trivial intervals:

∅ and [a, a ] ≡ {a}

where a is any number in R. The next four types are comprised of the finite
intervals:

(a, b), [a, b ], [a, b), and (a, b ]

where a and b are any numbers in R for which a < b. By definition, for any
number x in R:

x ∈ (a, b) iff a < x < b

x ∈ [a, b ] iff a ≤ x ≤ b
x ∈ [a, b) iff a ≤ x < b

x ∈ (a, b ] iff a < x ≤ b
The next four types are comprised of the semifinite intervals:

(a,→), [a,→), (← , b), and (← , b ]

where a and b are any numbers in R. By definition, for any number x in R:

x ∈ (a,→) iff a < x

x ∈ [a,→) iff a ≤ x
x ∈ (← , b) iff x < b

x ∈ (← , b ] iff x ≤ b

The last type is comprised of the infinite interval:

R

3◦ Obviously, if X falls into one of the eleven types just described then it
is an interval in R. Let us prove the converse. Let X be an interval in R. Of
course, we may assume that X contains more than one number, which is to
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say that X is nontrivial . It may happen that X∗ = ∅ and X∗ = ∅. In that
case, X = R. It may happen that X∗ �= ∅ and X∗ �= ∅. By the Completeness
Principles, we can introduce the largest number a in X∗ and the smallest
number b in X∗. Obviously, a < b. Of course, X itself may or may not admit
a smallest number and it may or may not admit a largest number. The four
alternatives correspond to the four types [ a, b ], [ a, b), (a, b ], and (a, b) of
finite intervals. In turn, it may happen that X∗ �= ∅ while X∗ = ∅. Of course,
X itself may or may not admit a smallest number. The two alternatives
correspond to the two types [a,→) and (a,→) of semifinite intervals. Finally,
it may happen that X∗ = ∅ while X∗ �= ∅. Of course, X itself may or may not
admit a largest number. The two alternatives correspond to the two types
(←, b ] and (←, b) of semifinite intervals. �

4◦ One says that the intervals:

∅, R, (a, b), (a,→), (←, b)

are open and that the intervals:

∅, R, [a, a ], [a, b ], [a,→), (←, b ]

are closed . We refer to a and b as the (left and right) endpoints of the relevant
intervals.

Neighborhoods

5◦ Let a and u be any numbers for which 0 < u. Let Nu(a) stand for the
finite open interval (a− u, a+ u):

Nu(a) := (a− u, a+ u)

Nu(a)

a− u a a+ u

Figure 2: A Neighborhood

We refer to Nu(a) as the neighborhood of a having radius u. One can easily
prove that, for any number x in R:

x ∈ Nu(a) iff a− u < x < a+ u iff |x− a| < u

18



Functions

6◦ The concept of Function derives from common experience with relations
between numbers. Very often, the relations express useful constructions or
important principles. Let us describe the concept in a form suitable to our
study. Let X be any subset of R. Let F be any “rule” which assigns to each
number x in X a unique value F (x). In this context, we say that F is a
function having domain X .

7◦ For examples, let X1 := R and let F1 be defined as follows:

F1(x) := x2

where x is any number in X1. In turn, let X2 := R− ∪ R+ and let F2 be
defined as follows:

F2(x) :=
1
x

where x is any number in X2. Finally, let X3 := R and let F3 be defined as
follows:

F3(x) :=
1− x2

1 + x2

where x is any number in X3.

8◦ Let S be any subset of X . We define:

F (S)

to be the subset of R consisting of all numbers y such that there is some
number x in S for which y = F (x). This notation will prove convenient from
time to time. In particular, we refer to:

F (X)

as the range of F . In the first of the foregoing examples, F1(X1) = [0,→). In
the second, F2(X2) = X2. In the third, F3(X3) = (−1, 1].

Graphs of Functions

9◦ Let X be any subset of R and let F be a function for which the domain
is X . By the graph of F , we mean the set Γ consisting of all “ordered pairs”
(x, y) of numbers in R such that x ∈ X and y = F (x). The graph Γ provides
a convenient visual form for analysis of the function F .
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10◦ For the examples described in article 7◦, the graphs have the form dis-
played in the following figure.

F1 F2

F3

(−1, 0) (1, 0)

(0, 1)

(0, 0)

F2

Figure 3: Graphs of Functions
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Operations on Functions

11◦ In terms of the operations of addition and multiplication on R, we can
define corresponding operations on functions. Thus, let X be any subset of
R and let F , G, and H be functions having common domain X . Let c be any
number in R. We define the sum of F and G and the product of F and G as
follows :

(F +G)(x) := F (x) +G(x)
(F ×G)(x) := F (x)×G(x)

and we define the scalar product of c and H as follows:

(c×H)(x) := c×H(x)

where x is any number in X . Of course, we will often write F · G or simply
FG instead of F × G and c · H or simply cH instead of c ×H . In turn, we
define the difference between F and G as follows:

(F −G)(x) := F (x)−G(x)

and the quotient of F and G as follows:

(F/G)(x) ≡ F

G
(x) :=

F (x)
G(x)

≡ F (x)/G(x)

where x is any number in X . Naturally, for the latter definition, we presume
that G(X) ⊆ R− ∪R+.

12◦ Let X be any subset of R and let F be a function having domain X . We
define the absolute value of F as follows:

|F |(x) := |F (x)|

where x is any number in X .

Compositions of Functions

13◦ Let X and Y be any subsets of R, let F be a function having domain
X , and let G be a function having domain Y . Let us assume that F (X) ⊆ Y .
That is, let us assume that, for each number x in X , the value F (x) is in Y .
In this situation, we can form a new function H having domain X , as follows:

H(x) := G(F (x))

where x is any number in X . We refer to H as the composition of F and G
and we denote it by G ◦ F .
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14◦ Let X4 := R− ∪R+ and let F4 be defined as follows:

F4(x) := x+
1
x

where x is any number in X4. With reference to article 7◦, we have:

(F3 ◦ F4)(x) = F3(F4(x)) =
1− (1 + 1/x)2

1 + (1 + 1/x)2
=
x4 − x2 − 1
x4 + 3x2 + 1

where x is any number in X4.

15◦ Let us return to the context of article 13◦. It may happen that not only
F (X) ⊆ Y but also G(Y ) ⊆ X . If so then we can form not only G◦F but also
F ◦G. Moreover, it may happen that, for any number x in X , G(F (x)) = x
and, for any number y in Y , F (G(y)) = y. If so then we say that F and G
are inverse to one another.

16◦ One may look ahead to Section 7 for significant examples. One will find
that the logarithm function L and the exponential function E are inverse to
one another and that the power functions Pa and P1/a (a �= 0) are inverse to
one another. For now, let us simply note that F2 is inverse to itself:

F2(F2(x)) = 1/(1/x) = x

where x is any number in X2. Let us also point to the following example,
inverse to itself. Let X5 := (−1,→) and let F5 be defined as follows:

F5(x) :=
1− x
1 + x

where x is any number in X5. We find that F5(X5) = X5 and that:

F5(F5(x)) =
1− 1− x

1 + x

1 + 1− x
1 + x

= x

where x is any number in X5.

The Order Relation on Functions

17◦ We can apply the order relation on R to define an order relation on
functions. Thus, let X be any subset of R and let F and G be functions
having common domain X . We write F ≤ G to express the condition that,
for any number x in X , F (x) ≤ G(x).
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Constant Functions

18◦ Let X be any subset of R and let F be a function having domain X . We
say that F is constant iff there is a number z in R such that, for any number
x in X , F (x) = z. That is, F (X) = {z}. We also say that F is constantly z.
On occasion, we denote F by ẑ.

Bounded Functions

19◦ Let X be any subset of R and let F be a function having domain X . We
say that F is bounded iff there are numbers c and d in R such that, for any
number x in X , c ≤ F (x) ≤ d. Obviously, F is bounded iff F (X)∗ �= ∅ and
F (X)∗ �= ∅.

Extreme Values

20◦ Let X be any subset of R and let F be a function having domain X . It
may happen that there is a number c in X such that, for any number x in X ,
F (c) ≤ F (x). In such a case, we refer to c as a minimum number for F and
to F (c) as the minimum value for F . Similarly, it may happen that there is
a number d in X such that, for any number x in X , F (x) ≤ F (d). In such a
case, we refer to d as a maximum number for F and to F (d) as the maximum
value for F . For illustrations, one may inspect the foregoing examples F1, F2,
F3, F4, and F5.

21◦ We refer to the minimum and maximum values as extreme values for F
and to the minimum and maximum numbers as extreme numbers for F . In
due course, we will find criteria under which such numbers and values must
exist and we will develop techniques for finding them.

Monotone Functions

22◦ Let X be any subset of R and let F be a function having domain X . We
say that F is decreasing iff, for any numbers x and y in X , if x < y then
F (y) ≤ F (x). We say that F is increasing iff, for any numbers x and y in X ,
if x < y then F (x) ≤ F (y). We say that F is strictly decreasing iff, for any
numbers x and y in X , if x < y then F (y) < F (x). We say that F is strictly
increasing iff, for any numbers x and y in X , if x < y then F (x) < F (y).

23◦ We say that F is monotone iff F is decreasing or increasing. We say that
F is strictly monotone iff F is strictly decreasing or strictly increasing.
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3 Continuous Functions

1◦ In this section, we study the condition of Continuity for functions defined
on subsets of R and we prove three basic theorems: the Uniform Continuity
Theorem, the Intermediate Value Theorem, and the Extreme Value Theorem.
These theorems play critical roles in our subsequent study of differentiable
and integrable functions.

Continuity at a

2◦ Let X be any subset of R and let F be a function having domain X . Let
a be any number in X and let b := F (a). We say that F is continuous at a
iff, for any number v in R+, there is some number u in R+ such that:

F (X ∩Nu(a)) ⊆ Nv(b)

The displayed condition means that, for any number x in R, if x ∈ X ∩Nu(a)
then F (x) ∈ Nv(b). Just as well, it means that, for any number x in R, if
x ∈ X and |x− a| < u then |F (x) − b| < v.

3◦ Let us consider the examples described in article 7◦ of Section 2. First,
we have X1 = R and:

F1(x) = x2

where x is any number in X1. Let a be any number in X1. Let us prove that
F1 is continuous at a. To that end, let v be any number in R+. We must
produce a number u in R+ such that, for any number x in X1, if |x− a| < u
then |x2 − a2| < v. By property (12) in Section 1:

|x| − |a| ≤ |x− a|

Hence, if |x− a| < u then |x| < u+ |a| and therefore:

|x2 − a2| = |x− a||x+ a| ≤ |x− a|(|x|+ |a|) < u(u+ 2|a|)

Let u be the smaller of 1 and v/(1 + 2|a|). Obviously, u(u + 2|a|) ≤ v. We
conclude that, for any number x in X1, if |x− a| < u then |x2 − a2| < v. We
have proved that F1 is continuous at a. �

4◦ Second, we have X2 = R− ∪R+ and:

F2(x) =
1
x

where x is any number in X2. Let a be any number in X2. Let us prove that
F2 is continuous at a. To that end, let v be any number in R+. We must
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produce a number u in R+ such that, for any number x in X2, if |x− a| < u
then:

| 1
x
− 1
a
| < v

Let u be the smaller of |a|/2 and a2v/2. For any number x in X2, if |x−a| < u
then |a| − |x| < u, so that 0 < |a|/2 < |x|, hence 0 < 1/|x| < 2/|a|, and
therefore:

| 1
x
− 1
a
| = 1
|x|

1
|a| |x− a| <

2
|a|

1
|a|u ≤ v

We have proved that F2 is continuous at a. �

5◦ Third, we have X3 = R and:

F3(x) =
1− x2

1 + x2

where x is any number in X3. Let a be any number in X3. Let us prove that
F3 is continuous at a. To that end, let v be any number in R+. We must
produce a number u in R+ such that, for any number x in X3, if |x− a| < u
then:

|1− x
2

1 + x2
− 1− a2

1 + a2
| < v

Let u := v/2. For any number x in X3, if |x− a| < u then:

|1− x
2

1 + x2
− 1− a2

1 + a2
| = 2(

1
1 + x2

)(
1

1 + a2
)|x2 − a2|

≤ 2|x− a|( 1
1 + x2

)(
1

1 + a2
)(|x| + |a|)

≤ 2|x− a|
< v

because |x|+ |a| ≤ 2|x| or |x| + |a| ≤ 2|a| and because 2|x|/(1 + x2) ≤ 1 and
2|a|/(1 + a2) ≤ 1. We have proved that F3 is continuous at a. �

Continuity and Uniform Continuity on X

6◦ In the first two of the foregoing examples, our design of u depended not
only upon v but also upon a. It could not have been otherwise. However, in
the third of the foregoing examples, our design of u depended only upon v.
This subtle refinement proves important. It leads to the following distinction
between Continuity and Uniform Continuity.
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7◦ Let X be any subset of R and let F be a function having domain X . We
say that F is continuous on X iff, for any number a in X , F is continuous at
a. We can display the condition of Continuity schematically as follows:

(for all a in X)(for all v in R+)(there exists u in R+)(for all x in X)
[ if |x− a| < u then |F (x) − F (a)| < v ]

Just as well:

(for all v in R+)(for all a in X)(there exists u in R+)(for all x in X)
[ if |x− a| < u then |F (x) − F (a)| < v ]

In contrast, we can display the stronger condition of Uniform Continuity as
follows:

(for all v in R+)(there exists u in R+)(for all a in X)(for all x in X)
[ if |x− a| < u then |F (x) − F (a)| < v ]

Just as well:

(for all v in R+)(there exists u in R+)(for all x in X)(for all y in X)
[ if |x− y| < u then |F (x) − F (y)| < v ]

We say that F is uniformly continuous on X iff, for any number v in R+,
there is some number u in R+ such that, for any numbers x and y in X , if
|x− y| < u then |F (x)− F (y)| < v. See the following article 14◦.

8◦ Under this terminology, we may say that F1 and F2 are continuous on
X (but not uniformly so) while F3 is uniformly continuous on X .

Basic Properties

9◦ Let X and Y be any subsets of R, let F be a function having domain
X , and let G be a function having domain Y . Let us assume that F (X) ⊆ Y .
Let a be any number in X , let b := F (a), and let c := G(b), so that:

(G ◦ F )(a) = G(F (a)) = G(b) = c

Let us prove that:

(1) if F is continuous at a and if G is continuous at b then G ◦ F is
continuous at a

To that end, let w be any number in R+. Since G is continuous at b, we can
introduce a number v in R+ such that, for any number y in Y , if |y − b| < v
then |G(y) − c| < w. Since F is continuous at a, we can introduce a number
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u in R+ such that, for any number x in X , if |x− a| < u then |F (x)− b| < v.
Hence, for any number x in X , if |x− a| < u then:

|(G ◦ F )(x) − c| = |G(F (x)) − c| = |G(y)− c| < w

where y := F (x). We conclude that G ◦ F is continuous at a. �

10◦ Let X be any subset of R, let F be a function having domain X , let a
be a number in X , and let b := F (a). Let us prove that:

(2) if F is continuous at a then |F | is continuous at a

Of course, |F |(a) = |b| and, for any number x in X :

| |F |(x)− |b| | = | |F (x)| − |b| | ≤ |F (x) − b|

Let v be any number in R+. Since F is continuous at a, we can introduce
a number u in R+ such that, for any number x in X , if |x − a| < u then
|F (x) − b| < v, hence | |F |(x) − |b| | < v. We conclude that |F | is continuous
at a. �

11◦ Let X be any subset of R and let F , G, and H be functions having
common domain X . Let c be any number in R. Let a be any number in X .
Let us prove that:

(3) if F and G are continuous at a then F +G and F ·G are continuous
at a

Let b := F (a) and c := G(a), so that (F +G)(a) = b+ c and (F ·G)(a) = b · c.
Let v be any number in R+. Since F is continuous at a, we can introduce
a number u′ in R+ such that, for any number x in X , if |x − a| < u′ then
|F (x) − b| < v/2. Since G is continuous at a, we can introduce a number u′′

in R+ such that, for any number x in X , if |x−a| < u′′ then |G(x)−c| < v/2.
Let u be the smaller of u′ and u′′. For any number x in X , if |x−a| < u then:

|(F +G)(x) − (b+ c)| = |(F (x) − b) + (G(x) − c)|
≤ |F (x) − b|+ |G(x) − c|
< (v/2) + (v/2)
= v

We conclude that F + G is continuous at a. Again, let v be any number in
R+. Let r′, s, and r′′ be any numbers in R+ for which:

r′|c| ≤ 1, s := |b|+ r′ · (v/2), r′′s ≤ 1
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Since F is continuous at a, we can introduce a number u′ in R+ such that,
for any number x in X , if |x− a| < u′ then |F (x)− b| < r′ · (v/2), so that:

|F (x)| < |b|+ r′ · (v/2) = s

Since G is continuous at a, we can introduce a number u′′ in R+ such that,
for any number x in X , if |x− a| < u′′ then |G(x) − c| < r′′ · (v/2). Let u be
the smaller of u′ and u′′. For any number x in X , if |x− a| < u then:

|(F ·G)(x) − (b · c)| = |F (x) ·G(x) − b · c|
= |F (x) ·G(x) − F (x) · c+ F (x) · c− b · c|
= |F (x) · (G(x) − c) + (F (x) − b) · c|
≤ |F (x)| · |G(x) − c|+ |F (x)− b| · |c|
< s · r′′ · (v/2) + r′ · (v/2) · |c|
≤ (v/2) + (v/2)
= v

We conclude that F ·G is continuous at a. �

12◦ If F is constant with constant value c then of course F is continuous at
a. If G = H as well then F ·G = c ·H . We conclude that:

(4) if H is continuous at a then c ·H is continuous at a

13◦ If G is continuous at a and if G(X) ⊆ X2 then 1/G is continuous at a,
because 1/G = F2 ◦G. We conclude that:

(5) if F and G are continuous at a and if G(X) ⊆ X2 then F/G is
continuous at a

because F/G = F · (1/G) = F · (F2 ◦G). See articles 4◦ and 9◦.

The Uniform Continuity Theorem

14◦ In general, the condition of uniform continuity is stronger than the con-
dition of continuity unimproved. However, in certain contexts, the two condi-
tions are equivalent. This equivalence yields important consequences for the
study of Integration.

15◦ Let X be any subset of R and let F be a function having domain X . Let
us prove that:

(6) if X is a closed finite interval in R and if F is continuous on X then
F is uniformly continuous on X
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We can introduce numbers a and b in R such that a < b and X = [a, b ]. Let
v be any number in R+. We must produce a number u in R+ such that, for
any numbers x and y in [ a, b ], if |x − y| < u then |F (x) − F (y)| < v. To
that end, let C be the subset of [a, b ] consisting of all numbers c in [a, b ] for
which:

(◦) there exists a number uc in R+ such that, for any numbers x and
y in [a, c ], if |x− y| < uc then |F (x)− F (y)| < v

Obviously, C �= ∅ because a ∈ C. Obviously, C∗ �= ∅ because b ∈ C∗. By
the Least Upper Bound Principle, we can introduce the smallest number d in
C∗. Obviously, a ≤ d ≤ b. We plan to prove that d ∈ C and d = b. That
done, we may introduce a number u := ub in R+ such that, for any numbers
x and y in [ a, b ], if |x − y| < u then |F (x) − F (y)| < v. In turn, we may
conclude that F is uniformly continuous on X . Let us prove that d ∈ C and
d = b. Since F is continuous at d, we can introduce a number t in R+ such
that, for any number z in [a, b ], if |z− d| < t then |F (z)−F (d)| < v/2. Since
d− (t/2) �∈ C∗, we can introduce a number c in C for which d− (t/2) < c ≤ d.
By definition, we can introduce a number uc inR+ such that, for any numbers
x and y in [a, c ], if |x− y| < uc then |F (x)−F (y)| < v. Let e be any number
in [d, d + (t/2)) ∩ [a, b ]. To illustrate the current argument, let us introduce
the following counterfactual figure.

a b

d− t c d e d+ t

Figure 4: Contrary to Fact

Obviously, d ≤ e ≤ b. We plan to prove that e ∈ C. That done, we may
infer that e ≤ d. In turn, we may conclude that d = e, so that d ∈ C, and
we may conclude that (d, d + (t/2)) ∩ [a, b ] = ∅, so that d = b. Let us prove
that e ∈ C. Let ue be the smaller of t/2 and uc. For any numbers x and y
in [ a, e ], if |x − y| < ue and if both x ∈ [ a, c ] and y ∈ [ a, c ] then of course
|F (x)− F (y)| < v. If either x ∈ (c, e ] or y ∈ (c, e ] then both x ∈ (d− t, d+ t)
and y ∈ (d − t, d + t), so that |F (x) − F (y)| = |(F (x) − d) − (F (y) − d)| ≤
|F (x)− d|+ |F (y)− d| < (v/2) + (v/2) = v. We conclude that e ∈ C. �

16◦ We refer to property (6) as the Uniform Continuity Theorem.
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The Intermediate Value Theorem

17◦ Let X be any subset of R and let F be a function having domain X . Let
Y be the range of F . Let us prove that:

(7) if X is an interval in R and if F is continuous on X then Y is an
interval in R

To that end, let c, d, and y be any numbers in R such that c ∈ Y , d ∈ Y , and
c < y < d. We must prove that y ∈ Y . Of course, we can introduce numbers
a and b in X such that F (a) = c and F (b) = d. Obviously, a �= b. However,
it may happen that a < b or it may happen that b < a. Let us assume that
a < b. Let R be the subset of [ a, b ] consisting of all numbers r in [ a, b ]
for which F (r) < y. Obviously, R �= ∅ because a ∈ R. Obviously, R∗ �= ∅
because b ∈ R∗. By the Least Upper Bound Principle, we can introduce the
smallest number s in R∗. Obviously, a ≤ s ≤ b. We contend that F (s) = y.
Let us suppose that F (s) < y. Under this supposition, we could introduce the
number v := y − F (s) in R+. Since F is continuous at s, we could introduce
a number u in R+ such that, for any number x in X , if |x − s| < u then
|F (x) − F (s)| < v, so that F (x) < y. We could then introduce numbers r
in (s, s + u) ∩ [ a, b ] for which the following contradictory properties hold:
s < r and F (r) < y. We infer that y ≤ F (s). Let us suppose that y < F (s).
Under this supposition, we could introduce the number v := F (s) − y in
R+. Since F is continuous at s, we could introduce a number u in R+ such
that, for any number x in X , if |x − s| < u then |F (x) − F (s)| < v, so
that y < F (x). We could then introduce numbers r in (s − u, s) ∩ [ a, b ] for
which the following contradictory properties hold: r ∈ R and y < F (r). We
conclude that y = F (s). We are half way done. Let us assume that b < a.
Let R be the subset of [ b, a ] consisting of all numbers r in [ b, a ] for which
y < F (r). Obviously, R �= ∅ because b ∈ R. Obviously, R∗ �= ∅ because
a ∈ R∗. By the Least Upper Bound Principle, we can introduce the smallest
number s in R∗. Obviously, b ≤ s ≤ a. We contend that F (s) = y. Let
us suppose that F (s) < y. Under this supposition, we could introduce the
number v := y − F (s) in R+. Since F is continuous at s, we could introduce
a number u in R+ such that, for any number x in X , if |x − s| < u then
|F (x) − F (s)| < v, so that F (x) < y. We could then introduce numbers r
in (s − u, s) ∩ [ b, a ] for which the following contradictory properties hold:
r ∈ R and F (r) < y. We infer that y ≤ F (s). Let us suppose that y < F (s).
Under this supposition, we could introduce the number v := F (s) − y in
R+. Since F is continuous at s, we could introduce a number u in R+ such
that, for any number x in X , if |x − s| < u then |F (x) − F (s)| < v, so that
y < F (x). We could then introduce numbers r in (s, s+ u) ∩ [b, a ] for which
the following contradictory properties hold: s < r and y < F (r). We conclude
that y = F (s). �
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18◦ We refer to property (7) as the Intermediate Value Theorem.

The Extreme Value Theorem

19◦ Let X be any subset of R and let F be a function having domain X . Let
Y be the range of F . Let us prove that:

(8) if X is a closed finite interval in R and if F is continuous on X then
Y is a closed finite interval in R, or else trivial

Obviously, Y is a nonempty trivial interval in R iff F is constant. Of course,
we can ignore this distracting case. Let us introduce numbers a and b in R
such that a < b and X = [a, b ]. We must produce numbers c and d in R such
that c < d and Y = F ([a, b ]) = [ c, d ]. By the Intermediate Value Theorem,
Y is an interval in R. By the Uniform Continuity Theorem, we can introduce
a number u in R+ such that, for any numbers x and y in [a, b ], if |x− y| < u
then |F (x) − F (y)| < 1, so that:

F (y)− 1 < F (x) < F (y) + 1

By the Principle of Archimedes, we can introduce an integer k in Z+ for which
(b− a)/k < u. We are led to define the finite chain:

a = y0 < y1 < y2 < · · · < yk−1 < yk = b

of numbers in [a, b ], where:

yj := a+
j

k
(b − a)

Clearly, for any number x in [a, b ], there is some integer j (1 ≤ j ≤ k) such
that x ∈ [ yj−1, yj ]. Hence, |x − yj| < u and |F (x) − F (yj)| < 1. We infer
that:

F (X) ⊆
k⋃

j=1

(F (yj)− 1, F (yj) + 1)

We conclude that F is bounded, so that Y is a finite interval in R. Hence, we
can introduce numbers c and d in R such that c < d and Y equals:

(c, d), [c, d ], [c, d), or (c, d ]

Let us suppose that c �∈ Y . Under this supposition, we could introduce the
function G having domain [a, b ], defined as follows:

G(x) :=
1

F (x) − c
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where x is any number in [a, b ]. Obviously, G would be continuous on [a, b ].
However, G would be unbounded, contradicting the conclusion just drawn for
F . We infer that c ∈ Y . Let us suppose that d �∈ Y . Under this supposition,
we could introduce the function H having domain [a, b ], defined as follows:

H(x) :=
1

d− F (x)

where x is any number in [a, b ]. Obviously, H would be continuous on [a, b ].
However, H would be unbounded, contradicting the conclusion just drawn for
F . We infer that d ∈ Y . We conclude that Y = [c, d ]. �

20◦ We refer to property (8) as the Extreme Value Theorem. Obviously, c is
the smallest value of F and d is the largest value of F .
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4 Differentiation

1◦ In this section, we investigate the condition of Differentiablity for func-
tions defined on nontrivial intervals in R. Subject to this condition, one can
measure the rate of change of the values of a function. After establishing
the computational properties of differentiable functions, we prove the basic
Mean Value Theorem. We then show that we can obtain important informa-
tion about a function from specific properties of its derivative. In particular,
we study the (related) problems of sketching the graph of a function and of
determining the extreme values of a function. Finally, we prove the grand
Theorem of Taylor.

Differentiability at a

2◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let a be any number in X . Let:

Xa := X\{a}

be the subset of X defined by excising a from X . Thus, for any number x in
R, x ∈ Xa iff x ∈ X and x �= a. Let Fa be the function having domain Xa,
defined as follows:

Fa(x) :=
1

x− a (F (x)− F (a))

where x is any number in Xa. We refer to Fa as the quotient function for F
at a.

3◦ We say that F is differentiable at a iff there is some number q in R such
that, for any number v in R+, there is some number u in R+ such that:

Fa(Xa ∩Nu(a)) ⊆ Nv(q)

The displayed condition means that, for any number x in R, if x ∈ Xa∩Nu(a)
then Fa(x) ∈ Nv(q). Just as well, it means that, for any number x in R, if
x ∈ X and 0 < |x− a| < u then |Fa(x) − q| < v. That is:

∣∣∣ 1
x− a (F (x) − F (a))− q

∣∣∣ < v

See Figure 5.
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slope = q

(a, F (a))

(x, F (x))

Figure 5: A Derivative

4◦ Let us show that there may be no such number q. For example, let
X := R, a := 0, and:

F (x) := |x|
where x is any number in X . Clearly:

F0(x) =
1
x
|x| =

{−1 if x < 0
1 if 0 < x

where x is any number in X0. Obviously, for this example, there is no such
number q.

5◦ Let us prove that if there is such a number q then it is unique. To that
end, let r and s be numbers in R which satisfy the stated condition. Let v
be any number in R+. We can introduce a number u′ in R+ such that, for
any number x in X , if 0 < |x − a| < u′ then |Fa(x) − r| < (v/2). In turn,
we can introduce a number u′′ in R+ such that, for any number x in X , if
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0 < |x− a| < u′′ then |Fa(x)− s| < (v/2). Let u be the smaller of u′ and u′′.
Let x be any number in Xa ∩Nu(a). Clearly:

|r − s| = |(r − Fa(x)) + (Fa(x) − s)|
≤ |r − Fa(x)| + |Fa(x)− s|
< (v/2) + (v/2)
= v

We conclude that r = s. �

6◦ Let F be differentiable at a. We refer to the uniquely determined number
q as the derivative of F at a and we denote it by:

F ′(a)

7◦ For illustration, let us consider the first among our standing examples.
We have X1 = R and:

F1(x) = x2

where x is any number in X1. Let a be any number in X1. Let us prove that
F1 is differentiable at a and that:

F ′
1(a) = 2a

To that end, let v be any number in R+. We must produce a number u in
R+ such that, for any number x in X1, if 0 < |x− a| < u then:

∣∣∣ 1
x− a (x2 − a2)− 2a

∣∣∣ < v

Let u := v. Obviously, for any number x in X1, if 0 < |x− a| < u then:

∣∣∣ 1
x− a(x2 − a2)− 2a

∣∣∣ =
∣∣∣ 1
x− a (x− a)(x+ a)− 2a

∣∣∣ =
∣∣∣x− a∣∣∣ < v

We conclude that F1 is differentiable at a and that F ′
1(a) = 2a. �

8◦ Now let us consider the second among our standing examples. We have
X2 = R− ∪R+ and:

F2(x) =
1
x

where x is any number in X2. Technically, we should restrict attention either
to the interval R− or to the interval R+. In effect, we will argue both cases
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at once. Let a be any number in X2. Let us prove that F2 is differentiable at
a and that:

F ′
2(a) = − 1

a2

To that end, let v be any number in R+. We must produce a number u in
R+ such that, for any number x in X1, if 0 < |x− a| < u then:

∣∣∣ 1
x− a(

1
x
− 1
a
) +

1
a2

∣∣∣ < v

Let us look back to article 4◦ in Section 3. Let u be the smaller of |a|/2 and
|a|3v/2. For any number x in X2, if 0 < |x − a| < u then 0 < 1/|x| < 2/|a|
and: ∣∣∣ 1

x− a (
1
x
− 1
a
) +

1
a2

∣∣∣ =
∣∣∣ 1
x− a(

a− x
xa

) +
1
a2

∣∣∣
=

∣∣∣ 1
xa
− 1
a2

∣∣∣
=

1
|a|

∣∣∣1
x
− 1
a

∣∣∣
<

1
|a|

2
|a|

1
|a| |x− a|

< v

We conclude that F2 is differentiable at a and that F ′
2(a) = −1/a2. �

Differentiability on X

9◦ Let X be any nontrivial interval in R and let F be a function having
domain X . We say that F is differentiable on X iff, for any number a in X ,
F is differentiable at a. Given that F is differentiable on X , we obtain a new
function having domain X , which, by definition, assigns to each number a in
X the value F ′(a). Of course, we denote the new function by F ′ and we refer
to it as the derivative of F .

10◦ For the examples F1 and F2, we have:

F ′
1(x) = 2x

where x is any number in X1, and:

F ′
2(x) = − 1

x2

where x is any number in X2.
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Continuous Extensions at a

11◦ Let us reformulate the condition of differentiability for F at a in terms
of the question of continuity for Fa at a. By this maneuver, we will be able
to design efficient proofs of the properties of differentiable functions, soon to
follow.

12◦ Let X be a nontrivial interval in R, let a be any number in X , and let
Fa be a function having domain Xa. Let G be a function having domain X .
We say that G is a continuous extension of Fa at a iff:

(◦) for each number x in Xa, G(x) = Fa(x)
(◦) G is continuous at a

In effect, G supplies the “missing value” of Fa at a. Moreover, the supplied
value is coherent with the given values of Fa.

13◦ With reference to articles 4◦ and 5◦, let us note that a continuous exten-
sion of Fa at a may not exist. However, if it does exist then it is unique; we
denote it by F̄a.

14◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let a be any number in X . By comparison of definitions, we
find that F is differentiable at a iff Fa admits a continuous extension at a.
Obviously, the supplied value for Fa at a would be F ′(a):

F̄a(a) = F ′(a)

15◦ Let us consider the examples F1 and F2. We find that (F1)a(x) = x+ a,
where x is any number in (X1)a, and that (F2)a(x) = −1/ax, where x is any
number in (X2)a. In both cases, these quotient functions admit continuous
extensions at a:

(F1)a(x) = x+ a and (F2)a(x) = −1/ax

Hence, F ′
1(a) = (F1)a(a) = 2a and F ′

2(a) = (F2)a(x) = −1/a2. See articles 7◦

and 8◦.

Differentiable Functions are Continuous

16◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let a be any number in X . Let us prove that:

(1) if F is differentiable at a then F is continuous at a
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To that end, let us introduce the continuous extension F̄a of Fa at a. We
have:

F (x) = F (a) + F̄a(x) · (x− a)
where x is any number in X . Since F̄a is continuous at a, F is continuous at
a. �

17◦ Obviously, if F is differentiable on X then F is continuous on X .

The Composition Rule

18◦ Let X and Y be any subsets of R, let F be a function having domain
X , and let G be a function having domain Y . Let us assume that F (X) ⊆ Y .
Let a be any number in X and let b := F (a). Let us prove that:

(2) if F is differentiable at a and if G is differentiable at b then G ◦ F
is differentiable at a and:

(G ◦ F )′(a) = G′(b) · F ′(a)

To that end, let us introduce the continuous extension F̄a of Fa at a and the
continuous extension Ḡb of Gb at b. We have:

(G ◦ F )a(x) =
1

x− a
(
(G ◦ F )(x) − (G ◦ F )(a)

)
=

1
x− a

(
G(F (x)) −G(F (a))

)
=

1
x− a Ḡb(F (x)) ·

(
F (x)− F (a)

)
= Ḡb(F (x)) · Fa(x)

where x is any number in Xa. Clearly, (Ḡb ◦F ) · F̄a is continuous at a. Hence,
(G ◦ F )a admits a continuous extension at a. In fact:

(G ◦ F )a = (Ḡb ◦ F ) · F̄a

We conclude that:

(G ◦ F )′(a) = (G ◦ F )a(a) = Ḡb(b) · F̄a(a) = G′(b) · F ′(a)

�

19◦ We refer to the rule expressed in property (2) as the Composition Rule.
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20◦ Obviously, if F is differentiable on X and G is differentiable on Y then
G ◦ F is differentiable on X and:

(G ◦ F )′ = (G′ ◦ F ) · F ′

Computational Properties

21◦ Let X be any subset of R and let F , G, and H be functions having
common domain X . Let c be any number in R. Let a be any number in X .
Let us prove that:

(3) if F and G are differentiable at a then F +G and F ·G are differ-
entiable at a and:

(F +G)′(a) = F ′(a) +G′(a)

and:
(F ·G)′(a) = F (a) ·G′(a) + F ′(a) ·G(a)

We have:

(F +G)a(x) =
1

x− a
(
(F +G)(x) − (F +G)(a)

)
=

1
x− a

(
(F (x) − F (a)) + (G(x) −G(a))

)
=

1
x− a

(
F (x)− F (a)

)
+

1
x− a

(
G(x) −G(a)

)
= Fa(x) +Ga(x)

where x is any number in Xa. Clearly, (F+G)a admits a continuous extension
at a. In fact:

(F +G)a = F̄a + Ḡa

Hence:

(F +G)′(a) = (F +G)a(a) = F̄a(a) + Ḡa(a) = F ′(a) +G′(a)

Moreover:

(F ·G)a(x) =
1

x− a
(
(F ·G)(x) − (F ·G)(a)

)
=

1
x− a

(
F (x) · (G(x) −G(a)) + (F (x) − F (a)) ·G(a)

)
= F (x) · 1

x− a (G(x) −G(a)) +
1

x− a (F (x) − F (a)) ·G(a)

= F (x) ·Ga(x) + Fa(x) ·G(a)
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where x is any number in Xa. Clearly, (F ·G)a admits a continuous extension
at a. In fact:

(F ·G)a = F · Ḡa + F̄a ·G(a)

Hence:

(F ·G)′(a) = (F ·G)a(a) = F (a)·Ḡa(a)+F̄a(a)·G(a) = F (a)·G′(a)+F ′(a)·G(a)

�

22◦ We refer to the rules expressed in property (3) as the Sum Rule and the
Product Rule.

23◦ Obviously, if F and G are differentiable on X then F +G and F ·G are
differentiable on X and:

(F +G)′ = F ′ +G′

and:
(F ·G)′ = F ·G′ + F ′ ·G

24◦ If F is constant with constant value c then of course F is differentiable
at a and F ′(a) = 0. If G = H as well then F · G = c · H . By the Product
Rule, we conclude that:

(4) if H is differentiable at a then c ·H is differentiable at a and:

(c ·H)′(a) = c ·H ′(a)

25◦ If G is differentiable at a and if G(X) ⊆ X2 then 1/G = F2 ◦G. By the
Composition Rule and by article 8◦, 1/G is differentiable at a and:

(
1
G

)′(a) = F ′
2(G(a)) ·G′(a) = −G

′(a)
G2(a)

We conclude that:

(5) if F and G are differentiable at a and if G(X) ⊆ X2 then F/G is
differentiable at a and:

(
F

G
)′(a) =

G(a) · F ′(a)− F (a) ·G′(a)
G2(a)

because F/G = F · (1/G) and, by the Product Rule:

(F · 1
G

)′(a) = −F (a)
G′(a)
G2(a)

+ F ′(a) · 1
G(a)
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26◦ We refer to the rule expressed in property (5) as the Quotient Rule.

27◦ Obviously, if F and G are differentiable on X and G(X) ⊆ X2 then F/G
is differentiable on X and:

(
F

G
)′ =

G · F ′ − F ·G′

G2

Notation

28◦ On occasion, we denote the derivative of F at a not by F ′(a) but by:

d

dx
F (x)

∣∣∣
x=a

and the derivative of F not by F ′ but by:

d

dx
F (x)

Of course, we might choose some other symbol, such as y, in place of x. By this
notation, we gain a certain flexibility. We can compute derivatives without
engaging in the sometimes circuitous process of “naming” the function. For
instance, the following expressions are now clear and meaningful:

d

dx
x2 = 2x

and:
d

dx
x2

∣∣∣
x=3

= 6

29◦ In the foregoing expressions, the unnamed function is F1. Let us apply
the flexible notation to the functions F2, F3, F4, and F5 as well:

d

dx
x−1 = −x−2

d

dx

1− x2

1 + x2
=

(1 + x2)(−2x)− (1− x2)(2x)
(1 + x2)2

= − 4x
(1 + x2)2

d

dy
(y + y−1) = 1− y−2

d

dx

1− x
1 + x

=
(1 + x)(−1)− (1− x)(1)

(1 + x)2
= − 2

(1 + x)2

41



Positive Powers

30◦ By the Product Rule and by Mathematical Induction, one can easily
prove that:

(6) for any integer k in Z+:

d

dx
xk = k · xk−1

To that end, one would apply the following inductive pattern of calculation:

d

dx
x = 1

and:

d

dx
xk+1 =

d

dx
(x ·xk) = (

d

dx
x) ·xk +x · d

dx
xk = 1 ·xk +x ·k ·xk−1 = (k+1) ·xk

F ′(c) = 0 at Extreme Numbers

31◦ Let X be any nontrivial open interval inR and let F be a function having
domain X . Let F be differentiable on X . Let us prove that:

(7) for any number ε in X , if ε is an extreme number for F then
F ′(ε) = 0

Let us suppose that F ′(ε) < 0. Under this supposition, we could introduce
a number v in R+ for which F ′(ε) + v < 0. Since F is differentiable at ε,
we could introduce a number u in R+ such that, for any number x in X , if
0 < |x− ε| < u then:

1
x− ε (F (x)− F (ε))− F ′(ε) ≤

∣∣∣ 1
x− ε (F (x)− F (ε))− F ′(ε)

∣∣∣ < v

so that:
1

x− ε (F (x) − F (ε)) < 0

Finally, we could introduce numbers x′ and x′′ in X for which ε − u < x′ <
ε < x′′ < ε + u. We would find that F (x′′) < F (ε) < F (x′), contrary to the
assumption that ε is an extreme number for F . In turn, let us suppose that
0 < F ′(ε). Under this supposition, we could introduce a number v in R+
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for which 0 < F ′(ε) − v. Since F is differentiable at ε, we could introduce a
number u in R+ such that, for any number x in X , if 0 < |x− ε| < u then:

F ′(ε)− 1
x− ε (F (x)− F (ε)) ≤

∣∣∣ 1
x− ε (F (x)− F (ε))− F ′(ε)

∣∣∣ < v

so that:
0 <

1
x− ε (F (x) − F (ε))

Finally, we could introduce numbers x′ and x′′ in X for which ε − u < x′ <
ε < x′′ < ε + u. We would find that F (x′) < F (ε) < F (x′′), contrary to the
assumption that ε is an extreme number for F . We conclude that F ′(ε) = 0. �

32◦ One should note that, in the foregoing argument, our introduction of x′

and x′′ depended upon the assumption that X is an open interval.

The Mean Value Theorem

33◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let F be differentiable on X . Let a and b be any numbers in X
such that a �= b. For any number c in X , we say that c lies between a and b
iff a < c < b if a < b and b < c < a if b < a. Let us prove that:

(8) there is a number c lying between a and b such that:

F ′(c) =
1

b− a (F (b)− F (a))

Obviously, property (8) is symmetric in a and b. Hence, without loss, we may
assume that a < b. Let us introduce the auxiliary function G having domain
[a, b ], defined as follows:

G(x) =
(
F (x) − F (a)

)− 1
b − a

(
F (b)− F (a)

) · (x− a)
where x is any number in [ a, b ]. Clearly, G(a) = 0 = G(b). Moreover, G is
differentiable on X and:

G′(x) = F ′(x) − 1
b− a

(
F (b)− F (a)

)
where x is any number in [ a, b ]. Let us prove that there is a number c in
(a, b) such that G′(c) = 0. That done, we may conclude that:

F ′(c) =
1

b− a
(
F (b)− F (a)

)
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By the Extreme Value Theorem, we can introduce numbers r and s in R such
that:

G([a, b ]) = [r, s ]

Let p and q be numbers in [ a, b ] for which G(p) = r and G(q) = s. By
definition, p and q are extreme numbers for G. It may happen that both p
and q are endpoints of [a, b ] or it may not. If so then r = 0 = s. In that case,
G is constantly 0 and we may take c to be any number in (a, b). If not then
p ∈ (a, b) or q ∈ (a, b). In that case, by property (7), we may take c to be p if
p ∈ (a, b) and we may take c to be q if q ∈ (a, b). �

34◦ We refer to property (8) as the Mean Value Theorem. From this theorem,
we can derive many important consequences. For instance, let us assume that
F is differentiable on X and that F ′ is constantly 0. By the Mean Value
Theorem, we infer that F itself must be constant. This simple property
figures at several points in Section 7.

Sketching Graphs of Functions

35◦ Let X be any nontrivial open interval inR and let F be a function having
domain X . Let F be differentiable on X . Let us prove that:

(9) if F ′(X) ⊆ R− then F is strictly decreasing and if F ′(X) ⊆ R+

then F is strictly increasing

Let us assume that F ′(X) ⊆ R−. Let a and b be any numbers in X such that
a < b. By the Mean Value Theorem, we can introduce a number c in (a, b)
such that:

F (b)− F (a) = F ′(c)(b − a)
Clearly, F (b) < F (a), because F ′(c) < 0. In turn, let us assume that F ′(X) ⊆
R+. Let a and b be any numbers in X such that a < b. By the Mean Value
Theorem, we can introduce a number c in (a, b) such that:

F (b)− F (a) = F ′(c)(b − a)

Clearly, F (a) < F (b), because 0 < F ′(c). �

36◦ Property (9) yields a method for sketching the graphs of differentiable
functions. Given a differentiable function F having domain X , one proceeds
to determine the subintervals of X on which the values of F ′ are negative
and the subintervals of X on which the values of F ′ are positive. On such a
subinterval, the restriction of F would be, correspondingly, strictly decreasing
and strictly increasing. The found intervals meet at critical numbers ε, for
which F ′(ε) = 0. See article 41◦. The ordered pairs (ε, F (ε)) serve as reference
positions from which one can sketch the graph of F .
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37◦ For illustration, let us recall the fourth function in our stock of examples.
We have X4 = R− ∪R+ and:

F4(x) = x+
1
x

where x is any number in X4. Technically, we should restrict attention either
to the interval R− or to the interval R+. In effect, we will argue both cases
at once. Clearly:

F ′
4(x) = 1− 1

x2

where x is any number in X4. Hence, F ′
4(x) < 0 iff 0 < x2 < 1, F ′

4(x) = 0
iff x2 = 1, and 0 < F ′

4(x) iff 1 < x2. The critical numbers are −1 and 1.
Obviously, F (−1) = −2 and F (1) = 2. The graph of F has the form sketched
in Figure 6.

F4

(−1,−2)

(1, 2)

F4

Figure 6: Sketch of a Graph
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Extreme Value Problems

38◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Very often, one wants to find the extreme numbers ε for F and the
corresponding extreme values F (ε). For that purpose, one asks two questions:

(◦) Do such numbers exist?
(◦) If so, where are they?

The Extreme Value Theorem provides a useful response to the first question.
One should note that it requires X to be closed and finite. Property (7)
provides a useful response to the second question. One should note that it
requires X to be open. Moreover, one should take care to distinguish between
critical numbers and extreme numbers for F . In general, we must say that
the most reliable responses to the two questions descend from a clear sketch
of the graph of F .

39◦ Let us consider a simple example. One will find a substantial, historically
interesting example in Section 8. Let a, b, and c be any numbers in R. Let
F be the function having domain R, defined as follows:

F (x) := (x− a)2 + (x− b)2 + (x− c)2

where x is any number in R. Clearly:

F ′(x) = 2(x− a) + 2(x− b) + 2(x− c) = 2(3x− (a+ b+ c))

where x is any number in R. Obviously, F ′(x) < 0 iff 3x < a+b+c, F ′(x) = 0
iff 3x = a+b+c, and 0 < F ′(x) iff a+b+c < 3x. We infer that the restriction
of F to (← , (a + b + c)/3) is strictly decreasing and the restriction of F to
((a + b + c)/3,→) is strictly increasing. We conclude that ε := (a+ b + c)/3
is a minimum number for F and there are no others. There is no maximum
number for F . For the record:

F (ε) =
2
3
(a2 + b2 + c2 − ab− ac− bc)

The Inversion Theorem

40◦ Let X be any nontrivial open interval in R and let F be a function
having domain X . Let F be differentiable on X . By the Intermediate Value
Theorem, Y := F (X) is an interval in R. Let us assume that F ′(X) ⊆ R− or
F ′(X) ⊆ R+. In the first case, F is strictly decreasing and in the second case
F is strictly increasing. In either case, we can introduce the function G having
domain Y such that F and G are inverse to one another. Of course, G would
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be, correspondingly, strictly decreasing or strictly increasing. Obviously, Y is
a nontrivial open interval in R. Let us prove that:

(10) G is differentiable on Y , and, for any number y in Y :

G′(y) =
1

F ′(x)

where x := G(y).

Let us focus upon the second of the foregoing cases, in which F is strictly
increasing. One can derive the first case from the second case by replacing
F by −F . Let b be any number in Y and let a := G(b). Let us prove that
G is continuous at b. To that end, let u be any number in R+. We must
produce a number v in R+ such that G(Y ∩Nv(b)) ⊆ Nu(a). Let p and q be
the numbers in X such that:

X ∩Nu(a) = (p, q)

Let r := F (p) and s := F (q). Of course, r < b < s. Let v be a number in R+

such that:
Nv(b) ⊆ (r, s)

Clearly:
G(Y ∩Nv(b)) ⊆ Nu(a)

We conclude that G is continuous at b. In turn, let us prove that G is dif-
ferentiable at b and that G′(b) = 1/F ′(a). To that end, let us introduce
the continuous extension F̄a of Fa at a. Let y be any number in Yb and let
x := G(y). We have:

Gb(y) =
1

y − b(G(y) −G(b)) =
1

F (x)− F (a)
(x− a) =

1
Fa(x)

We infer that:
Gb =

1
Fa ◦G

Clearly, Gb admits a continuous extension at b, because G is continuous at b.
In fact:

Ḡb =
1

F̄a ◦G
We conclude that G is differentiable at b and:

G′(b) = Ḡb(b) =
1

F̄a(G(b))
=

1
F̄a(a)

=
1

F ′(a)
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The Range of F ′ is an Interval

41◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let F be differentiable on X . Of course, the derivative F ′ of F
need not itself be differentiable on X . In fact, F ′ need not even be continuous
on X . Nevertheless, we can prove that:

(11) if F is differentiable on X then the range Y ′ := F ′(X) of F ′ is an
interval in R

To prove this remarkable property, let a and b be any numbers in X for
which a < b. Under the stated assumption, F̄a and F̄b are continuous on X .
Moreover, by definition:

F̄a(b) = Fa(b) = Fb(a) = F̄b(a)

Let τ be the common value of these numbers. Let r := F ′(a) and s := F ′(b).
Let us assume that r �= s. Let t be any number in R lying between r and s.
We must prove that t ∈ F ′(X). To that end, let us simply note that one of
the following three conditions must hold:

(◦) t lies between r = F̄a(a) and τ = F̄a(b)
(◦) t = τ
(◦) t lies between s = F̄b(b) and τ = F̄b(a)

In the first case, the Intermediate Value Theorem implies that t lies in the
interval Fa((a, b)). In the third case, the Intermediate Value Theorem implies
that t lies in the interval Fb((a, b)). Hence, in all three cases, the Mean Value
Theorem implies that:

t ∈ F ′((a, b)) ⊆ F ′(X)

�

The Theorem of Taylor

42◦ Let X be any nontrivial interval in R and let F be a function having
domain X . It may happen that F is differentiable on X . If so then we can
form the (first) derivative F ′ of F . It may happen that F ′ is differentiable
on X . If so then we can form the second derivative F ′′ ≡ (F ′)′ of F . It
may happen that F ′′ is differentiable on X . If so then we can form the third
derivative F ′′′ ≡ ((F ′)′)′ of F . Of course, we can continue these computations
for as long as the relevant functions are differentiable on X :

F (0) := F, F (1) := F ′, F (2) := F ′′, F (3) := F ′′′, . . . , F (k), . . .
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For convenience, we interpret F (0) to be F itself. For any integer k in Z+∪{0},
we refer to F (k) as the k-th derivative of F . We write:

F ∈ Dk

to express the condition that the k-th derivative of F exists. Of course,
F ∈ Dk+1 implies that F ∈ Dk.

43◦ Very often, one denotes F (k) by:

dk

dx
F (x)

44◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let k be any integer in Z+ ∪{0}. Let a be any number in X . Let
us assume that F ∈ Dk. Under this assumption, we define the k-th Taylor
Polynomial for F at a as follows:

(T k
aF )(x) :=

k∑
j=0

1
j!
F (j)(a)(x − a)j

where x is any number in R. Let us display the cases in which k = 0, k = 1,
k = 2, and k = 3:

(T 0
aF )(x) = F (a)

(T 1
aF )(x) = F (a) + F ′(a)(x − a)

(T 2
aF )(x) = F (a) + F ′(a)(x − a) +

1
2
F ′′(a)(x − a)2

(T 3
aF )(x) = F (a) + F ′(a)(x − a) +

1
2
F ′′(a)(x − a)2 +

1
6
F ′′′(a)(x− a)3

These cases show the sense and the merit of the summation sign.

45◦ In turn, we define the k-th Remainder Function for F at a as follows:

(Rk
aF )(x) := F (x) − (T k

aF )(x)

so that:
F (x) = (T k

aF )(x) + (Rk
aF )(x)

where x is any number in X .
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46◦ Let us prove that, for any integer k in Z+ ∪ {0} and:

(12) for any function F having domain X , if F ∈ Dk+1 then, for any
numbers a and x in X , if x �= a then there is a number c lying between a and
x such that:

(Rk
aF )(x) :=

1
(k + 1)!

F (k+1)(c)(x − a)k+1

To that end, we apply the method of Mathematical Induction. For each
integer k in Z+ ∪ {0}, let Tk stand for property (12). Let us note that T0

coincides with the Mean Value Theorem. We have already proved that it is
true. Let k be any integer in Z+ ∪ {0}. Let us assume that Tk is true. We
must prove that Tk+1 is true. Let F be any function having domain X such
that F ∈ Dk+2. Let a and x be any numbers in X for which a �= x. We must
produce a number c lying between a and x such that:

(Rk+1
a F )(x) =

1
(k + 2)!

F (k+2)(c)(x − a)k+2

For that purpose, let us introduce the function G having domain X , defined
as follows:

G(y) := (Rk+1
a F )(y)(x − a)k+2 − (y − a)k+2(Rk+1

a F )(x)

where y is any number in X . Clearly, G(x) = 0 and G(a) = 0 as well, because
(Rk+1

a F )(a) = 0. Moreover, G is differentiable on X and:

G′(y) = (Rk+1
a F )′(y)(x − a)k+2 − (k + 2)(y − a)k+1(Rk+1

a F )(x)

where y is any number in X . By the Mean Value Theorem, we can introduce
a number d lying between a and x such that G′(d) = 0. That is:

(Rk+1
a F )′(d)(x − a)k+2 = (k + 2)(d− a)k+1(Rk+1

a F )(x)

However:

F = T k+1
a F +Rk+1

a F, F ′ = T k
aF

′ +Rk
aF

′, and (T k+1
a F )′ = T k

aF
′

Hence:
(Rk+1

a F )′ = Rk
aF

′

We infer that:

(Rk
aF

′)(d)(x − a)k+2 = (k + 2)(d− a)k+1(Rk+1
a F )(x)
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Of course, F ′ ∈ Dk+1. By Tk, we can introduce a number c lying between a
and d such that:

(Rk
aF

′)(d) =
1

(k + 1)!
(F ′)(k+1)(c)(d − a)k+1

We conclude that:

(Rk+1
a F )(x) =

1
(k + 2)!

F (k+2)(c)(x − a)k+2

�

47◦ We refer to property (12) as the Theorem of Taylor. With reference to
this theorem, we can take:

(T k
aF )(x) =

k∑
j=0

1
j!
F (j)(a)(x− a)j

to be an estimate of F (x) and we can measure the error in the estimate by
finding an upper bound for:

∣∣(Rk
aF )(x)

∣∣ =
1

(k + 1)!

∣∣F (k+1)(c)
∣∣∣∣x− a∣∣k+1

Of course, we would choose a to be a number in X at which we can readily
compute the derivatives F (j)(a). However, in practice, it is not easy to bound
the error. For examples, see articles 37◦ and 38◦ in Section 7.

51



5 Integration

1◦ We devote this section to a study of the condition of Integrability for
bounded functions on closed finite intervals in R. Subject to this condition,
one can measure the area of the ordinate set of a function. We prove the
computational properties of integrable functions and we isolate two conditions
which are sufficient for integrability.

Integrable Functions

2◦ Let a and b be any numbers in R for which a < b. Let F be a function
having domain [a, b ]. We assume that F is bounded. Let:

Ω−(F ) and Ω+(F )

be the negative and positive parts of the ordinate set Ω(F ) for F . By defini-
tion, for any ordered pair (x, z) of numbers in R:

(x, z) ∈ Ω−(F ) iff a ≤ x ≤ b and F (x) ≤ z ≤ 0

and:
(x, z) ∈ Ω+(F ) iff a ≤ x ≤ b and 0 ≤ z ≤ F (x)

while:
Ω(F ) = Ω−(F ) ∪Ω+(F )

In due course, we will find that the condition of integrability for F coincides
with the condition that Ω−(F ) and Ω+(F ) have well defined areas and we will
find that the integral of F coincides with the “signed” area of Ω(F ), where the
area of Ω−(F ) counts as negative and the area of Ω+(F ) counts as positive.

3◦ Let us develop the condition of integrability for F . For that purpose,
we require several technical definitions, by which we can reduce the measure
of area for ordinate sets in general to the measure of area for rectangles in
particular.

4◦ By a partition of [a, b ], we mean any finite subset P of [a, b ] such that
a ∈ P and b ∈ P . We can display P as an indexed chain of numbers in [a, b ]
starting at a and ending at b:

a = p0 < p1 < p2 < · · · < pk−1 < pk = b

We refer to the integers j (0 ≤ j ≤ k) as indices .

52



5◦ Let P be any partition of [a, b ]. For each index j (1 ≤ j ≤ k), let:

nj(F, P )

be the largest number in F ([pj−1, pj ])∗ and let:

nj(F, P )

be the smallest number in F ([pj−1, pj ])∗. Without serious loss, one can regard
nj(F, P ) as the smallest value of F and nj(F, P ) as the largest value of F on
the subinterval [pj−1, pj ] of [a, b ]. In turn, let:

Σ(F, P ) =
k∑

j=1

nj(F, P ) (pj − pj−1)

and let:

Σ(F, P ) =
k∑

j=1

nj(F, P ) (pj − pj−1)

We refer to:

Σ(F, P ) and Σ(F, P )

as the lower estimate and the upper estimate, relative to P , of the (signed)
area of Ω(F ). Obviously:

Σ(F, P ) ≤ Σ(F, P )

See Figure 7.

6◦ Let us prove that:

(1) for any partitions P and Q of [a, b ], Σ(F, P ) ≤ Σ(F,Q)

To that end, let r be any number in [a, b ] such that r �∈ P . Let R := P ∪ {r}
be the partition of [ a, b ] produced by adding the number r to P . Isolating
the relevant index j, we can display the partitions P and R as follows:

a = p0 < p1 < p2 < · · · pj−1 < pj < · · · < pk−1 < pk = b

a = p0 < p1 < p2 < · · · pj−1 < r < pj < · · · < pk−1 < pk = b

Let n′
j(F,R) be the largest number in F ([ pj−1, r ])∗ and let n′′

j (F,R) be the
largest number in F ([r, pj ])∗. Clearly:

nj(F, P ) ≤ n′
j(F,R) and nj(F, P ) ≤ n′′

j (F,R)
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F

Figure 7; Lower and Upper Sums

Hence:

nj(F, P )(pj − pj−1) ≤ n′
j(F,R)(r − pj−1) + n′′

j (F,R)(pj − r)

We infer that:
Σ(F, P ) ≤ Σ(F,R)

By applying the foregoing observations “one new r at a time,” we may infer
that, for any partition R of [ a, b ], if P ⊆ R then Σ(F, P ) ≤ Σ(F,R). In
turn, let r be any number in [ a, b ] such that r �∈ Q. Let R := Q ∪ {r} be
the partition of [ a, b ] produced by adding the number r to Q. Isolating the
relevant index j, we can display the partitions Q and R as follows:

a = q0 < q1 < q2 < · · · qj−1 < qj < · · · < q�−1 < q� = b

a = q0 < q1 < q2 < · · · qj−1 < r < qj < · · · < q�−1 < q� = b
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Let n′
j(F,R) be the smallest number in F ([pj−1, r ])∗ and let n′′

j (F,R) be the
smallest number in F ([r, pj ])∗. Clearly:

n′
j(F,R) ≤ nj(F,Q) and n′′

j (F,R) ≤ nj(F,Q)

Hence:

n′
j(F,R)(r − pj−1) + n′′

j (F,R)(pj − r) ≤ nj(F,Q)(pj − pj−1)

We infer that:
Σ(F,R) ≤ Σ(F,Q)

By applying the foregoing observations “one new r at a time,” we may infer
that, for any partition R of [a, b ], if Q ⊆ R then Σ(F,R) ≤ Σ(F,Q). Finally,
let R be any partition of [a, b ] such that P ⊆ R and Q ⊆ R. For example, let
R := P ∪Q. We have:

Σ(F, P ) ≤ Σ(F,R) ≤ Σ(F,R) ≤ Σ(F,Q)

�

7◦ Now let Σ(F ) be the family of all numbers in R of the form:

Σ(F, P )

where P runs through all partitions of [ a, b ], and let Σ(F ) be the family of
all numbers in R of the form:

Σ(F,Q)

where Q runs through all partitions of [a, b ]. By property (1):

Σ(F ) ⊆ Σ(F )∗ and Σ(F ) ⊆ Σ(F )∗

Let:
Σ(F )

be the smallest number in Σ(F )∗ and let:

Σ(F )

be the largest number in Σ(F )∗. One may regard Σ(F ) as the “best” lower
estimate and Σ(F ) as the “best” upper estimate by means of rectangles of the
area of Ω(F ). Clearly:

Σ(F ) ≤ Σ(F )
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Schematically:

Σ(F, P ) Σ(F,Q)
· · · · · · · · · · · · • · · · · · · · · · · · ·

∥∥∥ · · · · · · · · · · · · • · · · · · · · · · · · ·
←− Σ(F ) −→ ←− Σ(F ) −→

8◦ Let a and b be any numbers in R for which a < b. Let F be a function
having domain [ a, b ]. We assume that F is bounded. We say that F is
integrable iff:

Σ(F ) = Σ(F )

In such a case, we define the integral of F to be the common value of the
foregoing numbers and we denote it by:

∫ b

a

F

Hence:

Σ(F ) =
∫ b

a

F = Σ(F )

9◦ Clearly, for any partition R of [a, b ]:

Σ(F )− Σ(F ) ≤ Σ(F,R)− Σ(F,R)

We infer that F is integrable iff, for any number v in R+, there is some
partition R of [a, b ] such that:

Σ(F,R) − Σ(F,R) < v

10◦ For illustration, let us consider the first among our standing examples.
Let a := 0 and b := 1. Let F be the function having domain [0, 1], defined as
follows:

F (x) := x2

where x is any number in [0, 1]. Let us prove that F is integrable and that:

∫ 1

0

F =
1
3
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To that end, let k be any integer in Z+ and let:

pj :=
j

k

where j is any integer for which 0 ≤ j ≤ k. Let P be the partition of [ 0, 1 ]
composed of the numbers just defined. For each index j (1 ≤ j ≤ k):

nj(F, P ) =
1
k2

(j − 1)2 and nj(F, P ) =
1
k2
j2

Hence:

Σ(F, P ) =
k−1∑
j=0

1
k2
j2

1
k

=
1
k3

1
6
(k − 1)k(2k − 1) =

1
6
(1− 1

k
)(2− 1

k
)

Σ(F, P ) =
k∑

j=1

1
k2
j2

1
k

=
1
k3

1
6
k(k + 1)(2k + 1) =

1
6
(1 +

1
k

)(2 +
1
k

)

See article 12◦ in Section 1. Obviously:

Σ(F, P ) <
1
3
< Σ(F, P ) = Σ(F, P ) +

1
k

We conclude that Σ(F ) = 1/3 = Σ(F ). Hence, F is integrable and:

∫ 1

0

F =
1
3

�

11◦ Now let us consider a peculiar example. Let a := 0 and b := 1. Let F be
the function having domain [0, 1], defined as follows:

F (x) :=
{

0 if x ∈ Q
1 if x ∈ I := R\Q

where x is any number in [ 0, 1 ]. Let P be any partition of [ 0, 1 ]. For each
index j (1 ≤ j ≤ k), we have:

nj(F, P ) = 0 and nj(F, P ) = 1

because both Q and I are dense in R. Hence, Σ(F, P ) = 0 and Σ(F, P ) = 1.
In turn, Σ(F ) = 0 < 1 = Σ(F ). We conclude that F is not integrable. �
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12◦ In the following articles 19◦ and 20◦, we will acquire two simple conditions
which faithfully imply integrability. In Section 6, we will acquire, by the
Fundamental Theorem, an efficient technique for computing the values of the
integrals.

Computational Properties

13◦ Let a and b be any numbers in R for which a < b. Let F , G, and H be
functions having common domain [a, b ]. Let c be a number in R. We assume
that F , G, and H are bounded. Let us prove that:

(2) if F and G are integrable then F +G is integrable and:

∫ b

a

(F +G) =
∫ b

a

F +
∫ b

a

G

To that end, let v be any number in R+. Since F is integrable, we can
introduce a partition P ′ of [a, b ] such that:

∫ b

a

F − (v/2) < Σ(F, P ′) ≤ Σ(F, P ′) <
∫ b

a

F + (v/2)

Since G is integrable, we can introduce a partition P ′′ of [a, b ] such that:

∫ b

a

G− (v/2) < Σ(G,P ′′) ≤ Σ(G,P ′′) <
∫ b

a

G+ (v/2)

Let P := P ′ ∪ P ′′:

a = p0 < p1 < p2 < · · · < pk−1 < pk = b

For each index j (1 ≤ j ≤ k) and for any number x in [pj−1, pj ]:

nj(F, P ) ≤ F (x) ≤ nj(F, P )

nj(G,P ) ≤ G(x) ≤ nj(G,P )

so:
nj(F, P ) + nj(G,P ) ≤ F (x) +G(x) ≤ nj(F, P ) + nj(G,P )

Hence:
nj(F, P ) + nj(G,P ) ≤ nj(F +G,P )

nj(F +G,P ) ≤ nj(F, P ) + nj(G,P )
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We infer that:

(
∫ b

a

F +
∫ b

a

G) − v < Σ(F, P ′) + Σ(G,P ′′)

≤ Σ(F, P ) + Σ(G,P )
≤ Σ(F +G,P )

≤ Σ(F +G,P )

≤ Σ(F, P ) + Σ(G,P )
≤ Σ(F, P ′) + Σ(G,P ′′)

< (
∫ b

a

F +
∫ b

a

G) + v

We conclude that F +G is integrable and:

∫ b

a

(F +G) =
∫ b

a

F +
∫ b

a

G

�

14◦ In turn, let us prove that:

(3) if H is integrable then c ·H is integrable and:

∫ b

a

c ·H = c ·
∫ b

a

H

To that end, we will focus upon the cases in which c = −1 and 0 < c. That
will be sufficient, because the case in which c = 0 is obviously true and the
case in which c < 0 can be reduced to the cases just described:

∫ b

a

c ·H =
∫ b

a

(−|c|) ·H = (−|c|) ·
∫ b

a

H = c ·
∫ b

a

H

Let us assume that c = −1. Clearly, for any partition P of [a, b ] and for any
index j (1 ≤ j ≤ k):

nj(−H,P ) = −nj(H,P ) and nj(−H,P ) = −nj(H,P )

Hence:
Σ(−H,P ) = −Σ(H,P ) and Σ(−H,P ) = −Σ(H,P )
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We infer that:
Σ(−H) = −Σ(H) = −Σ(H) = Σ(−H)

We conclude that −H is integrable and:

∫ b

a

(−H) = −
∫ b

a

H

Let us assume that 0 < c. Clearly, for any partition P of [ a, b ] and for any
index j (1 ≤ j ≤ k):

nj(c ·H,P ) = c · nj(H,P ) and nj(c ·H,P ) = c · nj(H,P )

Hence:

Σ(c ·H,P ) = c ·Σ(H,P ) and Σ(c ·H,P ) = c · Σ(H,P )

We infer that:

Σ(c ·H) = c ·Σ(H) = c · Σ(H) = Σ(c ·H)

We conclude that c ·H is integrable and:

∫ b

a

c ·H = c ·
∫ b

a

H

�

The Order Property

15◦ Let a and b be any numbers in R for which a < b. Let F and G be func-
tions having common domain [a, b ]. We assume that F and G are bounded.
Let us prove that:

(4) if F and G are integrable and if F ≤ G then:

∫ b

a

F ≤
∫ b

a

G

To that end, let us introduce the functions 0̂ and H := G−F having common
domain [a, b ]. Of course, the former is constantly 0 on [a, b ]. By the preceding
articles 13◦ and 14◦, H is integrable. Clearly, 0̂ ≤ H . Hence, for any partition
P of [a, b ]:

0 ≤ Σ(H,P )
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We conclude that:

0 ≤
∫ b

a

H =
∫ b

a

G−
∫ b

a

F

That is: ∫ b

a

F ≤
∫ b

a

G

�

16◦ Let a and b be numbers in X for which a < b. Let F be a function having
domain [a, b ]. We assume that F is bounded. Let us prove that:

(5) if F is integrable then |F | is integrable and:

∣∣∫ b

a

F
∣∣ ≤ ∫ b

a

|F |

To that end, let P be any partition of [a, b ]. We find that:

Σ(|F |, P )− Σ(|F |, P ) =
k∑

j=1

(nj(|F |, P )− nj(|F |, P ))(pj − pj−1)

(!) ≤
k∑

j=1

(nj(F, P )− nj(F, P ))(pj − pj−1)

= Σ(F, P )− Σ(F, P )

See the following article. By article 9◦, we infer that |F | is integrable. Since:

−|F | ≤ F ≤ |F |

we infer that:

−
∫ b

a

|F | ≤
∫ b

a

F ≤
∫ b

a

|F |

We conclude that: ∣∣∫ b

a

F
∣∣ ≤ ∫ b

a

|F |

17◦ Let us defend the inequality:

nj(|F |, P )− nj(|F |, P ) ≤ nj(F, P ) − nj(F, P )

which figured as the critical move in the foregoing argument. For that purpose,
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we note that, for any numbers x and y in [pj−1, pj ]:

nj(F, P ) ≤ F (x) ≤ nj(F, P ) and nj(F, P ) ≤ F (y) ≤ nj(F, P )

Hence:

−(nj(F, P )− nj(F, P )) ≤ F (x) − F (y) ≤ (nj(F, P )− nj(F, P ))

and so:
|F (x)− F (y)| ≤ nj(F, P ) − nj(F, P )

Let z be any number in R such that:

z < nj(|F |, P )− nj(|F |, P )

Clearly, we can introduce a number x in [pj−1, pj ] such that:

z + nj(|F |, P ) < |F |(x) < nj(|F |, P )

In turn, we can introduce a number y in [pj−1, pj ] such that:

nj(|F |, P ) < |F |(y) < |F |(x)− z < nj(|F |, P )− z

Hence:

z < |F (x)| − |F (y)| ≤ |F (x)− F (y)| ≤ nj(F, P )− nj(F, P )

We conclude that:

nj(|F |, P )− nj(|F |, P ) ≤ nj(F, P ) − nj(F, P )
�

Notation

18◦ On occasion, we denote the integral of F not by
∫ b

a

F but by:

∫ b

a

F (x)dx

Of course, we might choose some other symbol, such as y, in place of x. By
this notation, we gain a certain flexibility. We can compute integrals without
engaging in the sometimes circuitous process of “naming” the function. For
instance, the following expression is now clear and meaningful:

∫ 1

0

x2dx =
1
3
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Monotonic Functions are Integrable

19◦ Let a and b be any numbers in R for which a < b. Let F be a function
having domain [a, b ]. Let us prove that:

(6) if F is monotone then F is integrable

By definition, F is decreasing or increasing. Obviously, in either case, it is
bounded. Moreover, −F is decreasing iff F is increasing. Hence, without loss,
we can focus upon the second case. Let v be any number in R+. Let k be
any integer in Z+ such that (F (b)− F (a))(b − a)/k < v and let:

pj := a+
j

k
(b− a)

where j is any integer for which 0 ≤ j ≤ k. Let P be the partition of [ a, b ]
composed of the numbers just defined. For each index j (1 ≤ j ≤ k):

nj(F, P ) = F (pj−1) and nj(F, P ) = F (pj)

Hence:

Σ(F, P ) − Σ(F, P ) = F (b)
1
k
(b − a)− F (a)

1
k

(b− a) < v

and:
Σ(F, P ) ≤ Σ(F ) ≤ Σ(F ) ≤ Σ(F, P ) < Σ(F, P ) + v

We conclude that:
Σ(F ) = Σ(F )

hence that F is integrable. �

Continuous Functions are Integrable

20◦ Let a and b be any numbers in R for which a < b. Let F be a function
having domain [a, b ]. Let us prove that:

(7) if F is continuous on [a, b ] then F integrable

By the Extreme Value Theorem, F is bounded. Let v be any number in
R+. By the Uniform Continuity Theorem, we can introduce a number u
in R+ such that, for any numbers x and y in [ a, b ], if |x − y| < u then
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|F (x)−F (y)| < v/(b−a). Let k be any integer in Z+ such that (b−a)/k < u
and let:

pj := a+
j

k
(b− a)

where j is any integer for which 0 ≤ j ≤ k. Let P be the partition of [ a, b ]
composed of the numbers just defined. For each index j (1 ≤ j ≤ k) and for
any numbers x and y in [pj−1, pj ]:

nj(F, P )− nj(F, P ) < v/(b− a)

because |x− y| < u and |F (x) − F (y)| < v/(b− a). Hence:

Σ(F, P ) − Σ(F, P ) =
k∑

j=1

(nj(F, P ) − nj(F, P ))
1
k

(b− a) < v

and:
Σ(F, P ) ≤ Σ(F ) ≤ Σ(F ) ≤ Σ(F, P ) < Σ(F, P ) + v

We conclude that:
Σ(F ) = Σ(F )

hence that F is integrable. �

The Property of Additivity

21◦ Let a, b, and c be any numbers in R for which a < b < c. Let F be a
function having domain [a, c ] and let G1 and G2 be the restrictions of F to
[a, b ] and [b, c ]. Let us prove that:

(8) F is integrable iff G1 and G2 are integrable and:

∫ c

a

F =
∫ b

a

G1 +
∫ c

b

G2

Let us assume that F is integrable. Let R be any partition of [ a, c ]. Let
R∗ = R ∪ {b}, R1 := R∗ ∩ [a, b ], and R2 := R∗ ∩ [b, c ]. Obviously:

Σ(G1, R1)− Σ(G1, R1) ≤ Σ(F,R∗)− Σ(F,R∗) ≤ Σ(F,R)− Σ(F,R)

and:

Σ(G2, R2)− Σ(G2, R2) ≤ Σ(F,R∗)− Σ(F,R∗) ≤ Σ(F,R)− Σ(F,R)

64



We infer that G1 and G2 are integrable. Now let us assume that G1 and G2

are integrable. Let v be any number in R+. Since G1 is integrable, we can
introduce a partition R1 of [a, b ] such that:

∫ b

a

G1 − (v/2) < Σ(G1, R1) ≤ Σ(G1, R1) <
∫ b

a

G1 + (v/2)

Since G2 is integrable, we can introduce a partition R2 of [b, c ] such that:

∫ c

b

G2 − (v/2) < Σ(G2, R2) ≤ Σ(G2, R2) <
∫ c

b

G2 + (v/2)

Let R be the partition of [a, c ] formed by listing first the terms of R1, then
the terms of R2: R := R1 ∪R2. Clearly:

(
∫ b

a

G1 +
∫ c

b

G2)− v < Σ(G1, R1) + Σ(G2, R2)

= Σ(F,R)

≤ Σ(F,R)

= Σ(G1, R1) + Σ(G2, R2)

< (
∫ b

a

G1 +
∫ c

a

G2) + v

We conclude that F is integrable and:

∫ c

a

F =
∫ b

a

G1 +
∫ c

b

G2

�

The Oriented Integral

22◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let us assume that, for any numbers a and b in X , if a < b then
the restriction of F to [a, b ] is bounded and integrable. In turn, let a and b
be any numbers in X , unconstrained. Of course, we may have a < b, a = b,
or b < a. In the first case, the following expresson is clear and meaningful:

∫ b

a

F
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Let us extend the sense of the expression to cover all three cases, as follows:

∫ b

a

F :=




∫ b

a

F if a < b

0 if a = b

−
∫ a

b

F if b < a

Let us prove that:

(9) for any numbers a, b, and c in X :

∫ c

a

F =
∫ b

a

F +
∫ c

b

F

By simple inspection, we find that if any two of the three numbers a, b, and
c are equal then the displayed relation is true. Hence, we need only consider
the six cases in which the numbers a, b, and c are mutually distinct. We do
so by the following unconventional method. We select one of the six cases at
random, prove the displayed relation for that case, then declare the remaining
five cases to be true because, under random selection, any one of them could
have been selected. Now let us select, at random, the case: c < a < b. By
property (8), we have: ∫ b

c

F =
∫ a

c

F +
∫ b

a

F

Hence: ∫ c

a

F = −
∫ a

c

F =
∫ b

a

F −
∫ b

c

F =
∫ b

a

F +
∫ c

b

F

We rest our cases. They who are not convinced by this method should check
the other cases, one by one.©�
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6 THE FUNDAMENTAL THEOREM

1◦ In this section, we develop the Fundamental Theorem of our subject,
which relates the actions of differentiation and integration. To that end, we
introduce the concepts of Antiderivative and Indefinite Integral. We also
develop two important methods for the calculation of integrals: Integration
by Parts and Integration by Substitution.

Antiderivatives

2◦ Let X be any nontrivial interval in R and let F be a function having
domainX . We inquire whether or not there exists a function G having domain
X such that G is differentiable on X and G′ = F . That is:

G′(x) = F (x)

where x is any number in X . We refer to such a function G (if it exists) as
an antiderivative of F .

Essential Uniqueness

3◦ If such a function G does exist then it is essentially unique. Thus, for
any functions G1 and G2 having common domain X , if G1 and G2 are an-
tiderivatives of F then (G1 −G2)′ = F − F = 0, hence G1 −G2 is constant.
That is, there is a number z in R such that:

G1(x) = G2(x) + z

where x is any number in X .

4◦ However, such a function G may not exist. For instance, that would be
so if the range of F is not an interval. See article 41◦ in Section 4.

Existence: Indefinite Integrals

5◦ Now let us prove that:

(1) if F is continuous then, indeed, there exists a function G such that
G is an antiderivative of F

To that end, let a be any number in X . Let Ga be the function having domain
X , defined as follows:

Ga(x) :=
∫ x

a

F
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where x is any number in X . We refer to Ga as the indefinite integral of F at
a. Let us prove that Ga is an antiderivative of F . Thus, let b be any number
in X . We must prove that Ga is differentiable at b and that G′

a(b) = F (b).
For convenience, let ˆF (b) denote the constant function having domain X and
constant value F (b). Let v be any number in R+. Since F is continuous at
b, we can introduce a number u in R+ such that, for any number y in X ,
if |y − b| < u then |F (y) − F (b)| < v. Hence, for any number y in X , if
0 < |y − b| < u then:

∣∣∣ 1
y − b (Ga(y)−Ga(b)) − F (b)

∣∣∣ =
∣∣∣ 1
y − b (

∫ y

a

F −
∫ b

a

F ) − F (b)
∣∣∣

=
∣∣∣ 1
y − b

∫ y

b

F − 1
y − b

∫ y

b

ˆF (b)
∣∣∣

=
∣∣∣ 1
y − b

∫ y

b

(F − ˆF (b))
∣∣∣

≤ 1
|y − b|

∣∣∣ ∫ y

b

|F − ˆF (b)|
∣∣∣

<
1

|y − b| · v · |y − b|

= v

We conclude that G′
a(b) = F (b). �

Computation

6◦ Let X be any nontrivial interval in R and let F be a function having
domain X . Let F be continuous. Let G be an antiderivative of F . Let us
prove that:

(2) for any numbers a and b in X :

∫ b

a

F = G(b)−G(a)

Since G−Ga is constant, we can introduce a number z in R such that:

G(x) = Ga(x) + z

where x is any number in X . Hence:

G(b)−G(a) = (Ga(b) + z)− (Ga(a) + z) = Ga(b) =
∫ b

a

F

�
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THE FUNDAMENTAL THEOREM

7◦ In summary, we may say that Indefinite Integrals yield Antiderivatives
and that Antiderivatives yield Definite Integrals. These assertions, explained
by relations (1) and (2), comprise the Fundamental Theorem.

8◦ By the notation introduced in article 28◦ of Section 4, we can express
relation (1) as follows:

d

dx

∫ x

a

F = F (x)

In turn, by the following convenient notation:

G(x)
∣∣∣b
a

= G(b)−G(a)

and by the notation introduced in article 19◦ of Section 5, we can express
relation (2) as follows: ∫ b

a

F (x)dx = G(x)
∣∣∣b
a

For illustration, we offer the following expressions:

d

dx

∫ x

a

y2dy = x2

and:

−
∫ b

a

2
(1 + x)2

dx =
1− x
1 + x

∣∣∣b
a

See article 29◦ in Section 4.

Integration by Parts

9◦ Let X be any nontrivial interval in R and let F and G be functions
having common domain X . Let F and G be differentiable. Let a and b
be any numbers in X . By the Product Rule, F · G is an antiderivative for
F ·G′ + F ′ ·G. By the Fundamental Theorem:

(◦)
∫ b

a

F ·G′ +
∫ b

a

F ′ ·G = F (b)G(b)− F (a)G(a)

Just as well:

∫ b

a

F (x)G′(x)dx +
∫ b

a

F ′(x)G(x)dx = F (b)G(b)− F (a)G(a)
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10◦ Given F and G, we can compute the integral:

∫ b

a

F ′ ·G

by computing the integral: ∫ b

a

F ·G′

and by applying the foregoing relation. By this procedure, we may gain an
advantage, because the latter integral may be much easier to compute than
the former. We refer to the procedure as Integration by Parts.

11◦ Let us work out an example of Integration by Parts. To raise interest,
we borrow the logarithm function L from the following section. We have:

∫ 2

1

x
d

dx
log(x)dx+

∫ 2

1

d

dx
(
1
2
x2)log(x)dx =

∫ 2

1

1̂ dx+
∫ 2

1

x log(x)dx

Hence: ∫ 2

1

x log(x)dx = −
∫ 2

1

1̂ dx +
1
2
x2log(x)

∣∣∣2
1

= 2 log(2)− 1

Integration by Substitution

12◦ Let X and Y be any nontrivial intervals in R, let F be a function having
domain X , and let G be a function having domain Y . Let us assume that
F (X) ⊆ Y . Let F be differentiable, let F ′ be continuous, and let G be
continuous. Let a and b be any numbers in X and let:

c := F (a) and d := F (b)

Let H be an antiderivative for G. By the Composition Rule, H ◦ F is an
antiderivative for (G ◦ F ) · F ′. Of course:

(H ◦ F )(a) = H(c) and (H ◦ F )(b) = H(d)

By the Fundamental Theorem:

(◦)
∫ b

a

(G ◦ F ) · F ′ =
∫ d

c

G

Just as well: ∫ b

a

G(F (x))F ′(x)dx =
∫ d

c

G(y)dy
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13◦ Given G, we can try to design F so that the integral:

∫ b

a

(G ◦ F ) · F ′

is much easier to compute than the integral:

∫ d

c

G

If successful, we gain an advantage, though the design of F may be trouble-
some. We refer to this procedure as Integration by Substitution.

14◦ Let us work out an example of Integration by Substitution. To raise
interest, we borrow the exponential function E and the power function P1/2

from the following section. By the substitution:

y := log(x2 − 1), 1 < x

we have:
dy

dx
=

2x
x2 − 1

and
exp(2y)√
exp(y) + 1

=
(x2 − 1)2

x

Hence: ∫ log(8)

log(3)

exp(2y)√
exp(y) + 1

dy =
∫ 3

2

(x2 − 1)2

x

2x
x2 − 1

dx

=
∫ 3

2

2(x2 − 1)dx

= 2(
1
3
x3 − x)

∣∣∣3
2

=
32
3

In retrospect, we see that the good effect of the substitution is to turn the
problematic expression

√
exp(y) + 1 into x.
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7 Classical Functions

1◦ Now we turn to the definition and analysis of the classical functions,
which figure most frequently in the applications of differential and integral
calculus.

The Logarithm Function

2◦ Let us prove that there is exactly one function L having domain R+ and
meeting the following conditions:

(1) L(1) = 0
(2) L is differentiable onR+ and, for each number x inR+, L′(x) = 1/x

One refers to L as the logarithm function. One usually writes log(x) instead
of L(x).

3◦ To prove that L exists, we argue as follows. For each x in R+, let:

L(x) =
∫ x

1

1
z
dz

Obviously, L(1) = 0. By the Fundamental Theorem, L is differentiable on
R+ and, for each x in R+, L′(x) = 1/x.

4◦ To prove that L is unique, we argue as follows. Let L1 and L2 be functions
having common domain R+ and meeting the conditions (1) and (2). Obvi-
ously, L′

1 = L′
2. Hence, L1 − L2 is constant. Moreover, L1(1) − L2(1) = 0.

Hence, L1 − L2 is constantly 0. Therefore, L1 = L2. �

5◦ Let us prove that, for any numbers x, y, and z in R+:

(◦) L(xy) = L(x) + L(y) and L(1/z) = −L(z)

To that end, let y be any number in R+. Let L̄ be the function having domain
R+, defined as follows:

L̄(x) := L(xy)− L(y)

where x is any number in R+. Clearly, for any number x in R+:

L̄′(x) = (1/xy) · y = 1/x

Moreover, L̄(1) = 0. Hence, L̄ = L. We conclude that, for any numbers x
and y in R+, L(xy) = L(x) + L(y). In turn, let z be any number in R+. We
find that:

0 = L(1) = L(z · (1/z)) = L(z) + L(1/z)
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We conclude that, for any number z in R+, L(1/z) = −L(z). �

6◦ Let us note that the values of L′ are positive numbers. Hence, L is strictly
increasing. By the Intermediate Value Theorem, L(R+) is an interval. Let
us prove that, in fact, L(R+) = R. Obviously, 0 = L(1) < L(2). By article
5◦ and by Mathematical Induction, one can easily prove that, for any integer
j in Z+, L(2j) = jL(2). By the Principle of Archimedes, we infer that
L(R+)∗ = ∅. By article 5◦, −L(R+) = L(R+). We infer that L(R+)∗ = ∅,
as well. We conclude that L(R+) = R. �

7◦ In particular, we can introduce the number e in R+ such that:

(◦) L(e) =
∫ e

1

1
z
dz = 1

The Exponential Function

8◦ Let us prove that there is exactly one function E having domain R and
meeting the following conditions:

(3) E(0) = 1
(4) E is differentiable on R and, for each number y in R, E′(y) = E(y)

One refers to E as the exponential function. One usually writes exp(y) instead
of E(y).

9◦ To prove that E exists, we argue as follows. By article 6◦, we can intro-
duce the function E having domain R such that L and E are inverse to one
another. Of course, E(R) = R+. Obviously, E(0) = 1 because L(1) = 0. By
the Inversion Theorem, E is differentiable on R and, for each number y in R:

E′(y) = 1/L′(x) = 1/(1/x) = x

where x := E(y). See article 40◦ in Section 4.

10◦ To prove that E is unique, we argue as follows. Let E1 and E2 be
functions having common domain R and meeting the conditions (3) and (4).
We may assume that the values of E2 are positive, since that is true for the
particular case of E itself. Obviously:

(E1/E2)′ = (E2 · E′
1 − E1 ·E′

2)/E
2
2 = (E2 ·E1 − E1 · E2)/E2

1 = 0

Hence, E1/E2 is constant. Moreover, E1(0)/E2(0) = 1. Hence, E1/E2 is
constantly 1. Therefore, E1 = E2. �
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11◦ Clearly, for any numbers x, y, and z in R:

(◦) E(x+ y) = E(x) · E(y) and E(−z) = 1/E(z)

because:

L(E(x+ y)) = x+ y = L(E(x)) + L(E(y)) = L(E(x) ·E(y))

and:
L(E(−z)) = −z = −L(E(z)) = L(1/E(z))

12◦ Obviously:

(◦) E(1) = e

13◦ The following graphs display the relation between L and E.

(0, 1)

(1, e)

(e, 1)

(1, 0)

E

L

Figure 8: Logarithm and Exponential Functions
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The Power Functions

14◦ Let a be any number in R. By the power function with exponent a, we
mean the function Pa having domain R+, defined in terms of L and E as
follows:

(◦) Pa(x) := E(aL(x))

where x is any number in R+. One usually writes xa instead of Pa(x), so
that:

xa = exp(a log(x))

In particular:

P−1(x) = E(−L(x)) = E(L(1/x)) = 1/x
P0(x) = E(0 · L(x)) = E(0) = 1
P1(x) = E(L(x)) = x

P2(x) = E(2 · L(x)) = E(L(x) + L(x)) = E(L(x)) ·E(L(x)) = x · x

and so forth. Moreover:

P1/2(x) · P1/2(x) = E((1/2)L(x)) · E((1/2)L(x))

= E((1/2)L(x) + (1/2)L(x))
= E(L(x))
= x

so that, in familiar notation:

(◦) P1/2(x) =
√
x

15◦ Let us prove that, for any numbers a and b in R:

(◦) Pa · Pb = Pa+b and Pa ◦ Pb = Pab

Thus, for any number x in R+:

(Pa · Pb)(x) = Pa(x) · Pb(x)
= E(aL(x)) · E(bL(x))
= E(aL(x) + bL(x))
= E((a+ b)L(x))
= Pa+b(x)
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and:
(Pa ◦ Pb)(x) = Pa(Pb(x))

= E(aL(Pb(x)))
= E(aL(E(bL(x))))
= E(abL(x))
= Pab(x)

16◦ Let us prove that, for any number a in R:

(◦) P ′
a = a · Pa−1

Thus, for any number x in R+:

P ′
a(x) = E′(aL(x)) · a · L′(x)

= E(aL(x)) · a · (1/x)
= a · Pa(x) · P−1(x)
= a · Pa−1(x)
= (a · Pa−1)(x)

17◦ One can rewrite the foregoing relations as follows:

xa+b = xa · xb, xab = (xb)a,
d

dx
xa = a · xa−1

18◦ The graphs in Figure 9 show the pattern of the power functions:

Pa (a ∈ R)

The Trigonometric Functions

19◦ We contend that there is exactly one pair of functions C and S having
common domain R and meeting the following conditions:

(5) C(0) = 1 and S(0) = 0
(6) C and S are differentiable on R and, for each number z in R,

C′(z) = −S(z) and S′(z) = C(z)

One refers to C and S as the trigonometric functions, in particular, to C as
the cosine function and to S as the sine function. One usually writes cos(z)
instead of C(z) and sin(z) instead of S(z).
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(0, 1)

(0, 0) (1, 0)

2 1

−2

−1

Figure 9: Power Functions

20◦ To prove that C and S exist, we require the theory of Power Series. We
defer that story to a later day. For now, we simply assume that C and S exist.
However, for suggestions of arguments, one may look ahead to article 29◦.

21◦ To prove that C and S are unique, we argue as follows. Let C1 and S1

and C2 and S2 be pairs of functions having common domain R and meeting
the conditions (5) and (6). Let F be the function having domain R, defined
as follows:

F = (C1 − C2)2 + (S1 − S2)2

Clearly:

F ′ = 2(C1 − C2)(S2 − S1) + 2(S1 − S2)(C1 − C2) = 0

Moreover, F (0) = (1−1)2+(0−0)2 = 0. Hence, F is constantly 0. Therefore,
C1 = C2 and S1 = S2. �
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22◦ Let us prove that, for any number z in R:

(◦) C(z)2 + S(z)2 = 1

To that end, let F be the function having domain R, defined as follows:

F = C2 + S2

Clearly:
F ′ = 2CC′ + 2SS′ = −2CS + 2CS = 0

Moreover, F (0) = 12 + 02 = 1. Hence, F is constantly 1. �

23◦ Let us prove that, for any number z in R:

(◦) C(−z) = C(z) and S(−z) = −S(z)

To that end, let C̄ and S̄ be the functions having common domain R, defined
as follows:

C̄(z) := C(−z)
S̄(z) := −S(−z)

where z is any number in R. Clearly, C̄′ = −S̄ and S̄′ = C̄. Moreover,
C̄(0) = 1 and S̄(0) = 0. Hence, C̄ = C and S̄ = S. �

24◦ Let us prove that, for any numbers x and y in R:

(◦) C(x + y) = C(x)C(y) − S(x)S(y)

and:

(◦) S(x+ y) = S(x)C(y) + C(x)S(y)

To that end, let y be any number in R and let C̄ and S̄ be functions having
common domain R, defined as follows:

C̄(x) := C(y)C(x + y) + S(y)S(x+ y)
S̄(x) := −S(y)C(x+ y) + C(y)S(x + y)

where x is any number in R. Clearly:

C̄(x)C(y) − S̄(x)S(y) = C(x+ y)

and:
C̄(x)S(y) + S̄(x)C(y) = S(x+ y)
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One can easily check that C̄′ = −S̄ and S̄′ = C̄. Moreover, C̄(0) = 1 and
S̄(0) = 0. We infer that C̄ = C and S̄ = S. �

25◦ Let Z be the subset of R consisting of all numbers z in R such that:

C(z) = 0

We refer to the numbers z in Z as zeroes of C. Let us suppose that Z = ∅.
Of course, C(0) = 1. By the Intermediate Value Theorem, we would infer
that, for any number z in R, 0 < C(z). Since S′ = C, S would be strictly
increasing. Of course, S(0) = 0. Hence, 0 < S(1). Let b be any number in
R such that 1 < b and C(1) < S(1)(b− 1). By the Mean Value Theorem, we
could introduce a number c such that 1 < c < b and such that:

C(b) = C(1)− S(c)(b − 1) < C(1)− S(1)(b− 1) < 0

contrary to the foregoing inference. We conclude that Z �= ∅.

26◦ Let Z− := Z ∩R− and Z+ := Z ∩R+, so that Z = Z− ∪Z+. By article
23◦, Z− = −Z+. Hence, Z+ �= ∅. Let z̄ be the largest number in (Z+)∗. By
routine argument, one can prove that 0 < z̄ and C(z̄) = 0. We may say that
z̄ is the smallest positive zero of C. By convention, one denotes 2z̄ by π, so
that z̄ = π/2.

27◦ Clearly, the values of C and S on (0, π/2) are positive. Moreover, C is
strictly decreasing on (0, π/2) and S is strictly increasing on (0, π/2). Finally:

(◦) C(0) = 1, C(
π

2
) = 0, S(0) = 0, S(

π

2
) = 1

28◦ Clearly, for any number z in R:

(◦) C(z +
π

2
) = C(z)C(

π

2
)− S(z)S(

π

2
) = −S(z)

and:

(◦) S(z +
π

2
) = S(z)C(

π

2
) + C(z)S(

π

2
) = C(z)

By repeated application of these relations, we find that, for any number z in
R:

(◦) C(z + 2π) = C(z) and S(z + 2π) = S(z)

We say that C and S are periodic with period 2π.

79



29◦ In Figures 10 and 11, we organize many of the properties of C and S. In
particular, in the Unit Circle Diagram (Figure 11), we interpret z to be the
radian measure of the oriented angle comprised of the initial ray, in standard
position, issuing from (0, 0) and passing through:

(1, 0) = (C(0), S(0))

and the terminal ray, in variable position defined by z, issuing from (0, 0) and
passing through:

(x, y) = (C(z), S(z))

The oriented angle opens clockwise if z < 0 and counterclockwise if 0 < z.
In effect, z is the (signed) length of the circular arc joining (C(0), S(0)) to
(C(z), S(z)) and C(z) and S(z) are the first and second coordinates of the
position on the unit circle defined by z. However, we must acknowledge that
the interpretation just stated lacks precision, because we have not formally
defined the concept of arc length. In fact, such a definition requires great care.
It proves most efficient to define C and S independently, in terms of Power
Series, then to define the length of the arc joining (C(0), S(0)) to (C(z), S(z))
to be z.

30◦ By the way, one converts radian measure z to degree measure ζ as follows:

ζ◦ =
180◦

π
z

(0, 0) (2π, 0)

(0, 1)

(π, 0)S C

Figure 10: Trigonometric Functions
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(0, 0) (C(0), S(0))

(C(z), S(z))

z

Figure 11: The Unit Circle

The Inverse Trigonometric Functions

31◦ Obviously, the restriction of C to (0, π) is strictly decreasing and the
restriction of S to (−π/2, π/2) is strictly increasing. Moreover:

C((0, π)) = (−1, 1) = S((−π/2, π/2))

Hence, we can introduce the functions Ĉ and Ŝ having common domain (−1, 1)
such that C and Ĉ are inverse to one another and S and Ŝ are inverse to one
another. For any y in (−1, 1), we have:

Ĉ′(y) =
1

C′(x)
= − 1

S(x)
= − 1√

1− C2(x)
= − 1√

1− y2

Ŝ′(y) =
1

S′(x)
=

1
C(x)

=
1√

1− S2(x)
=

1√
1− y2

where x := Ĉ(y) or x := Ŝ(y), as needed.

81



32◦ One usually writes arccos(y) instead of Ĉ(y) and arcsin(y) instead of
Ŝ(y). Hence:

d

dy
arccos(y) = − 1√

1− y2

and:
d

dy
arcsin(y) =

1√
1− y2

The Tangent Function and its Inverse

33◦ Let T be the function having domain (−π/2, π/2), defined in terms of C
and S as follows:

T (z) =
S(z)
C(z)

where z is any number in (−π/2, π/2). One refers to T as the tangent function.
One usually writes tan(z) instead of T (z), so that:

tan(z) =
sin(z)
cos(z)

By the Quotient Rule, we find that:

T ′(z) =
C(z)S′(z)− C′(z)S(z)

C2(z)
=

1
C2(z)

where z is any number in (−π/2, π/2).

34◦ Obviously, T ′((−π/2, π/2)) ⊆ R+, so T is strictly increasing. Since:

S(−π/2) = −1, C(−π/2) = 0 = C(π/2), S(π/2) = 1

we find that:
T ((−π/2, π/2))∗ = ∅ = T ((−π/2, π/2))∗

By the Intermediate Value Theorem, T (X) = R. At this point, we can
introduce the function A having domain R such that T and A are inverse to
one another. For any number y in R, we have:

A′(y) =
1

T ′(x)
= C2(x) =

1
1 + T 2(x)

=
1

1 + y2

where x := A(y).
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35◦ One usually writes arctan(y) instead of A(y). Hence:

d

dy
arctan(y) =

1
1 + y2

Estimates of e and π

36◦ Let us make rough estimates of e and π. For e, we use a Taylor Poly-
nomial for E and the corresponding Remainder Function. For π, we use an
indirect computation involving T and A.

37◦ By the Mean Value Theorem, there is some number c in R such that
1 < c < 2 and:

L(2)− L(1) = L′(c)(2 − 1) =
1
c
(2− 1)

Hence, 1/2 < L(2) and 1 < L(4). We infer that e = E(1) < 4. By the
Theorem of Taylor, there is a number d in R such that 0 < d < 1 and such
that:

(R6
0E)(1) =

1
7!
E(d)(1 − 0)7

Hence:

e = E(1)

= (T 6
0E)(1) + (R6

0E)(1)

=
(1

1
+

1
1

+
1
2

+
1
6

+
1
24

+
1

120
+

1
720

)
+

( 1
5040

E(d)
)

We infer that:
13699
5040

< e <
13699
5040

+
4

5040
=

13703
5040

By long division:
2.718 < e < 2.719

38◦ One can easily verify that:

T (x+ y) =
T (x) + T (y)
1− T (x)T (y)

where x and y are any numbers in (−π/2, π/2) for which x + y is also in
(−π/2, π/2). Let:

r := A(
1
5
) and s := 4r − 1

4
π
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We find that:

T (2r) =
T (r) + T (r)
1− T (r)T (r)

=
(1/5) + (1/5)
1− (1/5)(1/5)

=
5
12

T (4r) =
T (2r) + T (2r)
1− T (2r)T (2r)

=
(5/12) + (5/12)
1− (5/12)(5/12)

=
120
119

and:

T (s) =
T (4r)− T (π/4)
1 + T (4r)T (π/4)

=
(120/119)− 1
1 + (120/119)

=
1

239

Hence:
π = 16A(

1
5
)− 4A(

1
239

)

By the Fundamental Theorem:

A(y) =
∫ y

0

1
1 + z2

dz

where y is any number in R. Clearly:

1− z2 <
1

1 + z2
< 1

and:
1− z2 + z4 − z6 <

1
1 + z2

< 1− z2 + z4

where z is any number in R. By integration:

y − 1
3
y3 < A(y) < y

and:
y − 1

3
y3 +

1
5
y5 − 1

7
y7 < A(y) < y − 1

3
y3 +

1
5
y5

where y is any number in R. Hence:

(−4)(
1

239
) < (−4)A(

1
239

) < (−4)
( 1
239
− 1

3
(

1
239

)3
)

and:

16
(1
5
− 1

3
(
1
5
)3 +

1
5
(
1
5
)5 − 1

7
(
1
5
)7

)
< 16A(

1
5
) < 16

(1
5
− 1

3
(
1
5
)3 +

1
5
(
1
5
)5

)
We infer that:

1231847548
392109375

< π <
670143059704
213311234375

By long division:
3.141 < π < 3.142
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8 The Cartesian Rainbow

1◦ In 1637a, René Descartes published one of the celebrated works in the
history of thought: Discours de la Méthod. In the preface to this work,
Descartes set forth the central precepts of his scientific method, by which one
would “acquire knowledge and avoid error.” In the work itself, he presented
three substantial discourses, which served as grand instances of successful
application of his method. However, in course of time, the preface came to
be viewed (and published) in its own right as a fundamental exposition of the
scientific method.

The three discourses by Descartes were devoted to Geometry, Dioptrics,
and Meteorology. In the first, Descartes initiated the study of geometry by
arithmetic methods, that is, by means of coordinate systems. In the second,
he described a quantitatively precise expression for the relation between the
incident and refracted rays in context of refraction of light, the relation now
known as the Law of Snell. Finally, in the third, he applied the Law of Snell
to develop a compelling explanation of the Rainbow.

The Problem

2◦ In his Meteorologica (c0340b), Aristotle presented the rainbow as a
problem to be solved. He required a description of:

(•) the agents of formation of the rainbow

and he required explanations of:

(•) its shape
(•) its size
(•) and its colors

Ab initio, Aristotle identified the agents of formation of the rainbow as the
Sun, a rain shower, and the eye of an observer. He declared its shape to be a
circular arc. These contributions have proved durable. The rest of his ideas,
however, have proved misleading.

3◦ In his Magnum Opus, delivered to Pope Clement IV in 1268a, Roger
Bacon reported his measurement of the angle of elevation of the peak of the
rainbow at sunset: roughly 42◦. This number serves as a measure of the size
of the bow.

4◦ The concentric arcs of color in the rainbow, descending subtly through
the visual spectrum:

red, orange, yellow, green, blue/indigo/violet
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comprise the primary mystery. For more than two thousand years, efforts to
explain the colors have developed, step for step, with efforts to explain the
nature of Light itself.

Descartes’ Diagrams

5◦ Let us summarize Descartes’ explanation of the shape and size of the
rainbow. In the first of the following two diagrams (Figure 12), one finds the
Sun setting in the west, rain falling in the east, and an (astonished) observer
taking note of the rainbow formed in the sky by the interaction of rays of light
from the Sun and droplets of water in the shower.

W

?!
42◦

S

Figure 12: Observation

6◦ In the second diagram (Figure 13), one finds a particular ray of light and
a particular raindrop magnified for inspection. The parameter y measures
the elevation of the particular ray above the indicated axis of the raindrop.
We have set the radius of the raindrop at one unit. In reality, the radius is
roughly one millimeter. The stream of Particles composing the ray will meet
the raindrop at pointA, some being reflected but some being refracted into the
body of the drop. Those particles which enter the drop at point A will meet
the opposite surface at point B, some being refracted into the exterior but
some being reflected. The particles which are reflected at point B will again
meet the surface of the raindrop at point C, some being again reflected but
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some being refracted into the exterior. The particles which leave the raindrop
at point C will have followed the path drawn in the diagram. Employing the
Law of Snell, Descartes calculated the angle δ of deviation of the incident ray
as a function of the parameter y:

(�) δ = π + 2ι− 4ρ

where ι and ρ are the angles of Incidence and Refraction, respectively, as
indicated in the diagram. Of course, ι and ρ are determined by y. See article
8◦.

y

ι A D

δρ

ρ

ρ
B

ρ

C
ι

π − δ

Figure 13: Deviation

Derivation of the Deviation Angle δ

7◦ The incident ray of light marked by the parameter y (0 < y < 1) changes
direction three times: at point A, at point B, and at point C. At point A, it
turns clockwise through an angle of ι − ρ; at point B, clockwise through an
angle of π − 2ρ; and at point C, clockwise through an angle of ι− ρ. Hence,
the total angle δ of deviation of the incident ray is π + 2ι− 4ρ.
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The Calculations

8◦ In his famous tables of trigonometric functions (1612a), Bartholomeus
Pitiscus recorded the values of the sine, tangent, and reciprocal cosine func-
tions accurate to seven significant figures in steps of one sixth of one sixtieth
of a degree. With immense patience, Descartes applied the tables to calculate
approximate values of δ corresponding to the following values of y:

0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Intrigued by the emerging pattern, he then calculated approximate values of
δ corresponding to the following values of y:

0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90

Assembling the numbers in a graph, he found compelling evidence that one
special value of y, roughly 0.86, yielded a corresponding deviation angle δ of
minimum value:

180◦

π
δ ≈ 138◦

Let us denote those values of y and δ by ȳ and δ̄ and let us refer to the ray
with parameter ȳ as the Cartesian Ray. Clearly, the cartesian ray will reach
the eye of the observer at an angle of elevation:

180◦− 180◦

π
δ̄ ≈ 42◦

the angle of Bacon.

The Basic Graph

9◦ Let us apply the Calculus to analyze relation (�). Let ∆ be the deviation
function having domain (0, 1), defined as follows:

δ ≡ ∆(y) := π + 2ι− 4ρ

where y is any number in (0, 1). Of course, ι and ρ are determined by y. In
fact, by Figure 13:

y = sin(ι), ι = arcsin(y)

By the Law of Snell:

sin(ι) = ν sin(ρ)

Hence:
y = νsin(ρ), ρ = arcsin(

1
ν
y)
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Now we can present ∆ explicitly as a function of y:

δ ≡ ∆(y) := π + 2 arcsin(y)− 4 arcsin(
1
ν
y)

where y is any number in (0, 1).

10◦ Descartes adopted the following value for the air/water Index of Refrac-
tion ν:

ν =
4
3

11◦ By differentiation, we find that:

dδ

dy
= 0 + 2

dι

dy
− 4

dρ

dy
=

2√
1− y2

− 4√
ν2 − y2

See article 32◦ in Section 7. By simple computation, we find that:

dδ

dy
< 0 iff y <

√
4− ν2

3

dδ

dy
= 0 iff y =

√
4− ν2

3

dδ

dy
> 0 iff y >

√
4− ν2

3

Clearly, the graph of ∆ must take the form displayed in Figure 14. Moreover:

ȳ =

√
4− ν2

3

and:
δ̄ = π + 2 arcsin(ȳ)− 4 arcsin(

1
ν
ȳ)

For the value ν = 4/3, we find that:

ȳ = 0.8607

and:

180◦ − 180◦

π
δ̄ = 180◦ − 180◦

π
2.4080 = 180◦ − 138.0◦ = 42.0◦
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(0, 2) (ȳ, 2) (1, 2)

(0, δ̄)

(0, π)

Figure 14: The Cartesian Graph

12◦ The foregoing analysis makes sense only if 1 < ν < 2.

13◦ Let us introduce the elevation function H , having domain (1, 2):

ε ≡ H(ν) := π − δ̄ = 4 arcsin(
1
ν

√
4− ν2

3
)− 2 arcsin(

√
4− ν2

3
)

where ν is any number in (1, 2). With diligence, one can show that:

dε

dν
= · · · · · · · · · = −2

ν

√
4− ν2

ν2 − 1

Hence, H is strictly decreasing. See the following article 20◦.

Interpretation: Its Size

14◦ The coincidence between Descartes’ calculation and Bacon’s measure-
ment is, of course, striking. However, it does not by itself constitute an
explanation of the size of the rainbow. Scientific explanation requires more
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than a coincidence between construction and measurement. It requires that
the coincidence itself be subject to rational interpretation. The process of
explaining natural phenomena is inherently regressive, terminating only when
it reaches a primary layer of uncontested assent.

15◦ But Descartes pressed his discovery to a deeper level. He called attention
to the significance of the minimum value of a function. Since the cartesian
ray yields a deviation angle of minimum value, the light rays nearby to that
ray will emerge from the raindrop closely packed . They will create for the
eye of the observer the impression of a bright spot in the sky at an angular
elevation of 42◦. In contrast, the light rays far from the cartesian ray will
emerge more or less evenly spaced and, in comparison with the Cartesian
Pack, will create for the eye of the observer impressions substantially less
bright. The following Ray Diagram (Figure 15) makes everything clear.

Cartesian Pack

Figure 15: Ray Diagram
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The Cinematic Effect

16◦ Of course, raindrops fall. While the bright spot seems to hang in the sky
at an angular elevation of 42◦, the raindrops creating it give way, moment by
moment, to those above. Moreover, raindrops fall rapidly. The bright spot
seems to hang continuously. It does not flicker.

Interpretation: Its Shape

17◦ Descartes’ construction is symmetric about the line issuing from the eye
of the observer, parallel to the line of the horizon. Accordingly, any raindrop
for which the angle between the eye-raindrop line and the eye-horizon line is
42◦ will contribute to the impression of the rainbow for the observer. Techni-
cally, then, the rainbow consists of a circular cone of directions, with vertex
at the eye of the observer and with angle of aperture equal to 42◦. Hence,
Descartes’ construction explains not only the size but also the circular shape
of the rainbow.

Jubilation

18◦ Descartes attempted but failed to explain the distribution of colors in
the rainbow.

19◦ While the theory of Descartes would in due course prove to be only the
first step in a complex sequence of refinements, continuing to the present day,
one can hardly help but share in his jubilation:

“Those who have understood all which has been said in the treatise will
no longer see anything in the clouds in the future for which they will not easily
understand the cause.” (Les Météors)

Its Colors

20◦ In 1704a, Isaac Newton published his treatise: Optiks. In this work,
Newton presented his theory of color and his application of that theory to
numerous observations of natural bodies. In particular, in Proposition 9,
Problem 4 of Book 1, Part 2, he set the following problem:

“By the discovered properties of light, to explain the colours of the rain-
bow.”

To solve the problem, Newton applied the theory of Descartes but he intro-
duced a new feature: the parameter ν (the index of refraction for air/water)
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varied for various colors of visible light, being smallest for red light and largest
for blue:

νr = 1.331
νb = 1.343

As a result, the angular elevation of the cartesian pack varied for various
colors:

180.00◦

π
εr = 42.37◦

180.00◦

π
εb = 40.65◦

where εr := H(νr) and εb := H(νb). Newton’s theory entailed that the vertical
span of the rainbow should be:

42.37◦ − 40.65◦ = 1.72◦

which proved to be in rough agreement with observation.

21◦ One applies the term Dispersion to refer to optical phenomena which
depend specifically upon the color (that is, the Frequency) of light. Thus, one
may say that the distribution of colors in the rainbow is an effect of dispersion.
However, one may rightly ask whether such a statement explains anything at
all. The fact of dispersion appears as an empirical irreducible. Even under
the sophisticated theory of Electricity and Magnetism perfected by James C.
Maxwell in the Nineteenth Century, the effects of dispersion are traceable to
the empirically determined parameters of Electric Permittivity and Magnetic
Permeability of the medium under study. In any case, Newton did not explain,
in terms of more fundamental concepts and constructions, the dependence of
the index of refraction for air/water upon color.

Informed Seeing

22◦ Under certain conditions, streaks of green and purple appear at the lower
edge of the peak of the rainbow. One refers to the streaks as Supernumerary
Arcs. To the naive observer, these arcs are simply a part of the sweep of
color in the rainbow. To the informed observer, however, they pose a new
problem. The arcs have no “place” in the Cartesian/Newtonian theory. To
explain the supernumerary arcs, one must invoke not the Particle Model but
the Wave Model of Light, one must investigate the optical phenomenon of
Interference, and one must analyze the Perception of Color in the Eye/Mind
of the observer.
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Existence/Uniqueness

23◦ One may rightly ask whether the rainbow “exists,” and, if so, whether it
is “unique.” For a given observer, the observed rainbow is not an object but a
conical assembly of directions. For distinct observers, the observed rainbows
are distinct. Unlike the circumstance in which such sensory impressions as
tree-like legs and a snake-like trunk could be explained to a group of blind
men as aspects of the same underlying Elephant, for the aggregate of sensory
impressions to which we refer as the rainbow, there is no underlying common
object, unless one is content to declare it to be a State of the Atmosphere.
The rainbow shares in the subtlety of distinctions between Matter and Light,
between Thing and Process.

References

24◦ Very often, a secondary rainbow appears in the sky, above the primary
bow. Can one adapt the cartesian explanation to the secondary bow? This
and many other questions are treated in the following books:

The Rainbow: From Myth to Mathematics, Carl B. Boyer, 1987a
Geometry Civilized, J. L. Heilbron, 1998a
Light and Color in the Outdoors, M. G. J. Minnaert, 1993a
Introduction to Meteorological Optics, R. A. R. Tricker, 1970a

By study of these books, one will be able to form answers to such questions
as the following:

(◦) Why does one see just two rainbows?
(◦) Does the size of the raindrops effect the appearance of the rainbow?
(◦) Should one expect to see a rainbow in a shower of sulphuric acid on

Venus?
(◦) ...... in a shower of lead sulphate on Earth?
(◦) Would an Orca see a rainbow in a quiet sea, formed in a rising

shower of air bubbles?
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9 Problems

1• Memorize the Greek alphabet:

α alpha A
β beta B
γ gamma Γ
δ delta ∆
ε epsilon E
ζ zeta Z
η eta H
θ theta Θ
ι iota I
κ kappa K
λ lambda Λ
µ mu M
ν nu N
ξ xi Ξ
o omicron O
π pi Π
ρ rho P
σ sigma Σ
τ tau T
υ upsilon Υ
φ phi Φ
χ chi X
ψ psi Ψ
ω omega Ω

2• Show that, for any number x in R, if x+ x = 0 then x = 0. Note that,
for any number y in R, 0 ·y+0 ·y = (0+0) ·y = 0 ·y. Conclude that 0 ·y = 0.

3• Show that, for any numbers x and y in R, if xy = y then x = 1 or y = 0.

4• In article 2◦ of Section 1, one finds the definition of the multiplicative
inverse of a number x in R. In that context, one finds the constraint that
x �= 0. Why is that constraint imposed?

5• Show that, for any numbers x and y in R, if 0 < x and 0 < y then
0 < x+ y and 0 < x · y.

6• Show that −1 < 0 < 1.
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7• Show that, for any numbers x and y in R, if 0 < x and 0 < y then:

√
xy ≤ 1

2
(x + y)

To that end, note that 0 ≤ (
√
x−√y )2. Conclude that if xy = 1 then:

2 ≤ x+ y

8• Show that, for any number x in R and for any integer k in Z, if x �= 1
and 0 < k then:

1 + x+ x2 + x3 · · · + xk−1 =
1− xk

1− x
9• Apply Mathematical Induction to show that, for any positive integer k,
the sum of the first k odd integers equals k2:

1 + 3 + 5 + · · · + (2k − 1) = k2

10• Note that:
(1− 1

2
) =

1
2

(1− 1
2
)(1− 1

3
) =

1
3

(1− 1
2
)(1− 1

3
)(1− 1

4
) =

1
4

Guess the general “law.” Prove it by Mathematical Induction.

11• Apply Mathematical Induction to show that, for any integer k in Z, if
3 < k then 2k < k!.

12• With reference to article 29◦ in Section 1, let b be any integer for which
2 ≤ b. Let δ be any series of digits subject to the stated conditions. One
says that δ is preperiodic iff there are integers k and � such that 0 < k and,
for any integer j, if j + k < � then δj = δj+k. Let x be the positive number
represented by δ. Show that δ is preperiodic iff x is rational. Find the base
60 representation of 1/7.

13• Let C be a circle in the Euclidean plane for which the radius is 1. Let P1

be an equilateral triangle in the plane circumscribed about C and let C1 be
the circle in the plane circumscribed about P1. Let P2 be a square in the plane
circumscribed about C1 and let C2 be the circle in the plane circumscribed
about P2. Let P3 be a regular pentagon in the plane circumscribed about
C2 and let C3 be the circle in the plane circumscribed about P3. In general,
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for each positive integer j, let Pj+1 be a regular (j + 2)-gon in the plane
circumscribed about Cj and let Cj+1 be the circle in the plane circumscribed
about Pj+1. Let X be the subset of R comprised of the radii of the various
circles. Show that X∗ is not empty. Find the smallest number r in X∗. See
Figure 16.

Figure 16: Radii

14• With reference to the examples of functions described in article 7◦ of
Section 2, verify that F1(X1) = [0,→), F2(X2) = X2, and F3(X3) = (−1, 1].

15• Let z be any number in R. Let [z] stand for the integer k in Z such that:

k ≤ z < k + 1

Let F be the function having domain [−2, 2], defined as follows:

F (x) = [x2 − 1]

Draw the graph of F .
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16• Let r be any number in R for which r < −1 or 3 < r and let Fr be the
function having domain R, defined as follows:

Fr(x) := r x (1 − x)

Find all numbers y in R such that:

Fr(Fr(y)) = y

To that end, let G be the function having domain R, defined as follows:

G(x) := x− Fr(Fr(x))

= (1− r2)x+ r2(1 + r)x2 − 2r3x3 + r3x4

Note that:
G(x) = 0 iff Fr(Fr(x)) = x

where x is any number in R. Note also that G is a fourth degree polynomial
and that:

G(0) = 0, G(
r − 1
r

) = 0 because F (0) = 0, F (
r − 1
r

) =
r − 1
r

As a result, there must exist numbers a, b, and c in R such that:

G(x) = (x− 0)(x− r − 1
r

)(ax2 + bx+ c)

where x is any number in R. Find a, b, and c. Of course, these numbers will
depend upon r. In fact, a = r3, b = −r2(1+ r)r, and c = r(1+ r). Now finish
the problem.

17• Let H0 be the function having domain X := R−∪R+, defined as follows:

H0(x) :=
{−1 if x < 0

1 if 0 < x

Let h be any number inR. Let H be the function having domainR = X∪{0},
defined by extending H0 as follows:

H(x) :=
{
H0(x) if x �= 0
h if x = 0

Find a number h in R such that H is continuous at 0 or show that it cannot
be done.
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18• Let F be the function having domain R, defined as follows:

F (x) =
x− 6
x2 + 1

Find a specific number u inR+ such that, for any number x inR, if |x−1| < u
then:

|F (x) − F (1)| < 1
100

To that end, note that:

|F (x) − F (1)| = | x− 6
x2 + 1

− 1− 6
12 + 1

|

= |5x
2 + 2x− 7
2(x2 + 1)

|

≤ |5x2 + 2x− 7|
= |(x − 1)(5x+ 7)|
≤ |x− 1|(5|x|+ 7)

Note also that, for any number u in R+, if |x − 1| < u then |x| < 1 + u, so
that 5|x|+ 7 < 5u+ 12. Now find an appropriate u.

19• Let F be the function having domain (0, 1], defined as follows:

F (x) :=
1
x

Note that F is continuous. Show that F is not bounded.

20• Let X be any interval in R, let F be a function having domain X , and
let a be any number in X . Let F be continuous at a and let 0 < F (a). Show
that there is a number u in R+ such that, for any number x in R, if x ∈ X
and |x− a| < u then 0 < F (x).

21• Let F be the function having domain (−1,→), defined as follows:

F (x) :=
1− x
1 + x

Apply the Basic Properties of continuous functions to show that F is contin-
uous. Find the range of F .
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22• Let F be the function having domain [0,→), defined as follows:

F (x) := x2

Note that F is continuous. Let y be any number in [ 0,→). Show that there
is exactly one number x in [0,→) such that F (x) = y. That is:

x =
√
y

To that end, apply the Intermediate Value Theorem.

23• Let F be a function having domain [ 0, 1 ]. Let F be continuous and let
the range of F be a subset of [ 0, 1 ]. Show that there must be a number z
in [ 0, 1 ] such that F (z) = z. To that end, introduce the function G having
domain [0, 1], defined as follows:

G(x) := x− F (x)

Apply the Intermediate Value Theorem. Draw a diagram to illustrate the
foregoing result.

24• Let F be the function having domain R+, defined as follows:

F (x) =
√
x

Let a and x be any numbers in R+. Note that:

(
√
x−√a)(√x+

√
a) = x− a

and that:

|√x−√a | = |x− a|√
x+
√
a
≤ 1√

a
|x− a|

Apply the foregoing observation to prove that F is continuous.

25• Let F be the function having domain R+, defined as follows:

F (x) =
√
x

Show that F is differentiable at 1 and that:

F ′(1) =
1
2

26• Calculate:
d

dx
log(

1
cos(x)

+ tan(x))
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27• Compute:

(01)
d

dx
(6− x+ 3x2)

∣∣
x=2

(02)
d

dy
7y9

∣∣
y=b

(03)
d

dz

1− z3

1 + z3

∣∣
z=0

(04)
d

dz

√
1− z3

1 + z3

∣∣∣
z=c

(05)
d

dx
(x2 log(x))

∣∣
x=1

(06)
d

dy

√
1 +
√
y

∣∣∣
y=4

(07)
d

dx

(
(
1 + x2

x1/2
)(1 + x1/2)1/2

)∣∣
x=1

(08)
d

dx
(x3 +

x2log(x)
sin(x)

)
∣∣
x=π/2

(09)
d

dx

log(
1
2
x)tan(

π

4
x)

1 + x2
|x=1

(10)
d

dx
log(

1−√1 + x

1 +
√

1 + x
)

28• Describe the function F having domain R such that F (0) = 3 and, for
any number x in R, F ′(x) = −2F (x).
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29• Let F be the function having domain R+, defined as follows:

F (x) =
1
2
(1 + x) − x1/2

Find the values of x such that F ′(x) < 0. In turn, find the values of x such
that F ′(x) = 0 and the values of x such that 0 < F ′(x). Use the information
to sketch the graph of F .

30• Sketch the graph of the following function:

F (x) = arctan(x+
1
x

)

where x is any number in R+. Portray the endpoint behaviour carefully.

31• Let a, b, and c be any numbers in R. Let F be the function defined as
follows:

F (x) =
{
x2 if x < c
ax+ b if c ≤ x

where x is any number in R. Show that F is differentiable at c iff a, b, and c
satisfy the following relations: • • • • • ?

32• Let h, c, k, and T be certain numbers in R+. Let F be the function
having domain R+, defined as follows:

F (x) = hc2x−5(exp(
hc

kTx
)− 1)−1

Sketch the graph of F . To do so, show that there is exactly one number y in
R+ such that:

(◦) y exp(y)(exp(y)− 1)−1 = 5

In fact, the value of y is approximately 4.965. In turn, show that, for any
number x in R+, if 0 < x < hc/kTy then 0 < F ′(x); if x = hc/kTy then
F ′(x) = 0; and if hc/kTy < x then F ′(x) < 0. Conclude that:

x̄ =
hc

kTy

is the maximum number for F . Obviously:

x̄T =
hc

ky
≈ hc

4.965k

Note that, for fixed values of h, c, and k, x̄ and T are inversely related.

102



33• Let F be the function defined as follows:

F (x) =
1

1 + x2

where x is any number for which 0 ≤ x ≤ 1. Let P be the partition of the
interval [0, 1] comprised of the numbers:

0 =
0
4
,
1
4
,
2
4
,
3
4
,
4
4

= 1

Calculate the corresponding lower and upper sums:

L(F, P ), U(F, P )

With reference to article 35◦ in Section 7, show that:

∫ 1

0

1
1 + x2

dx =
π

4

Is that result consistent with your calculations?

34• Let a, b, and c be any numbers in R but let a �= 0. Let F be the quadratic
polynomial defined as follows:

F (x) = ax2 + bx+ c

where x any number in R. Find specific values for a, b, and c such that:

F (0) = 0, F (1) = 0,
∫ 1

0

F (x)dx = 1

35• Show that: ∫ 1

1/2

1
x
dx =

∫ 2

1

1
x
dx

36• Find all antiderivatives for the function F having domain (−π/2, π/2),
defined as follows:

F (x) = log(cos(x))tan(x)

37• Find all continuous functions F for which:∫ x

0

F (y)dy = (F (x))2 + c

where c is a constant.
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38• Compute:

(01) 2
∫ 1

0

x

1 + x2
dx

(02)
∫ 2

1

1
x
log(x)dx

(03)
∫ 4

1

√
x log(x)dx

(04)
∫ e

1

w3log(w)dw

(05)
∫ 1

0

1
3
w2 1

1 + w3
dw

(06)
∫ π

0

sin3(w)dw

39• Compute:

(01)
d

dx

∫ log(x)

0

exp(y2)dy

(02)
d

dx

∫ tan(x)

0

arctan(w)dw
∣∣∣
x=π/4

(03)
d

dx

∫ x(1+x)

0

1− w
1 + w

dw
∣∣∣
x=1

(04)
d

dx

∫ tan(x)

0

arctan(w)dw
∣∣∣
x=π/4
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40• Let ε be any number for which 0 < ε < 1. Show that, for any positive
number y, there is exactly one positive number x such that:

y = x− ε sin(x)

Let G be the function so defined:

y = G(y)− ε sin(G(y))

where y is any positive number. Calculate:

G′(x− ε sin(x))

where x is any positive number.

41• Let F be the function defined as follows:

F (x) := 1− 2(1− x)1/2

where x is any number for which −1 < x < 1. Let k be any nonnegative
integer. Show that:

(T k
0 F )(x) < F (x)

where x is any number for which 0 < x < 1. Show that if k is even then:

F (x) < (T k
0 F )(x)

while if k is odd then:
(T k

0 F )(x) < F (x)

where x is any number for which −1 < x < 0. Sketch the graphs of F and of
T 2

0F .

42• Let a be any number in R. Let F be the function defined as follows:

F (x) = (1 + x)a = exp(a log(1 + x))

where x is any number in R for which −1 < x < 1. Let k be any nonnegative
integer. Calculate:

(T k
0 F )(x)

where x is any number in R.

43• With reference to article 13◦ in Section 8, show that:

dε

dν
= −2

ν

√
4− ν2

ν2 − 1
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44• Let p, q, r, s, v, and w be any numbers for which p < 0 < r, s < 0 < q,
0 < v, and 0 < w. Let F be the function defined as follows:

F (x) =
1
v

√
(x− p)2 + q2 +

1
w

√
(x − r)2 + s2

where x is any number. Show that there is precisely one number x̄ such that,
for any number x, if x < x̄ then F ′(x) < 0 and if x̄ < x the 0 < F ′(x). Note
that F (x̄) is the minimum value of F . With reference to Figure 17, verify
that:

x̄− p√
(x̄− p)2 + q2

= ν
r − x̄√

(x̄− r)2 + s2

where ν = v/w. That is:

(S) sin(ι) = ν sin(ρ)

Suitably interpreted, the foregoing relation comprises Snell’s Law .

Figure 17: Snell’s Law

(p, q)

(x̄, 0)

(r, s)

ι

ρ

y

x
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45• Let ε and d be numbers for which 0 < ε < 1 and 0 < d. Let r be the
function of φ defined as follows:

r

d− r cos(φ)
= ε

That is:
r =

dε

1 + ε cos(φ)

See Figure 18. Let x and y be the functions of φ defined as follows:

x = r cos(φ)
y = r sin(φ)

Find the minimum and maximum values of x. Let a be half the difference
between them. Find the minimum and maximum values of y. Let b be half
the difference between them. Naturally, the values of a and b will depend
upon ε and d. Note that 0 < b < a. Show that:

a2 − b2 = ε2a2

With reference to Figure 18, find the relation between the angles η and φ.

Figure 18: An Ellipse

(x, y)

(−εa, 0) (0, 0) (d, 0)

η φ

y

x

r
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46• Consider the standard parabola in the plane, described by the following
relation between the coordinates x and y:

y = x2

The focus of this parabola is the point (0, 1/4). Imagine a ray of light which
issues from the focus, meets the parabola at the point (x, x2), then reflects in
such a way to make equal angles with the perpendicular. See Figure 19. Show
that, no matter what ray of light be imagined, the reflected ray is vertical.
This is the principle of the parabolic mirror . All rays of light issuing from the
focus emerge from the mirror parallel to its axis.

Figure 19: A Parabolic Mirror

(0, 1
4 )

ι (x, x2)

ι

y

x
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History

47• For a lucid account of the history of our subject, we recommend the
following book:

The History of the Calculus, Carl B. Boyer, 1959a

Questions

48• What is a Real Number? What does it mean for numbers, such as 0 and 1,
to exist? Are the assumptions about numbers true? Do the assumptions lead
to contradictions? These questions are the province of Mathematical Logic:
the formal study of the Foundations of Mathematics. The answers to these
questions prove to be subtle, complex, and fascinating. For an introduction
to such matters, one might consult the essay:

Math000.pdf

posted on my website:

http://www.reed.edu/˜wieting/essays.html
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