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1 Objectives

01◦ Let ❉ and ❋ be two stars at rest in an Inertial Frame F. Let d be
the distance between them. Let S and T be a Sojourner and a Traveler,
respectively, who reside on ❉. The latter proposes to travel from ❉ to ❋.
The flight plan for T requires that he fly in a straight line; that he start from
rest on ❉, proceed for a period of time τ̄ with specified constant acceleration
g, then proceed for the same period of time τ̄ with constant deceleration −g,
coming to rest on ❋; and that he immediately turn about to make the return
trip in the same manner. Of course, the period of time τ̄ is the period of
proper time, as measured by the traveler T. Our objectives are:

(◦) to find relations among the variables d, τ̄ , and g by which, given
two of them, we can solve for the third

(◦) given g and d, to solve for the length of the trip as measured by S

in the Inertial Frame F

Of course, for T, the length of the trip is 4τ̄ .

2 Space Travel

02◦ We employ the geometric system of units, for which time and distance
are measured in meters and lightspeed c is 1. We apply the methods of Special
Relativity.

03◦ In particular, we represent the Inertial Frame F as an ordered quadruple
of four-vectors:
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For any four-vectors y and z:

y = ykfk, z = zℓfℓ

we present the lorentzian inner product as follows:

y ∗ z = y0z0 − y1z1 − y2z2 − y3z3

04◦ We may describe the position of the Traveler T during the first segment
of his trip by the four-vector x:

x(τ) = xj(τ)fj

where 0 ≤ τ ≤ τ̄ . The second, third, and fourth segments of the trip may be
described similarly.

05◦ Let u and a be the corresponding four-vector velocity and four-vector
acceleration:

u(τ) = x◦(τ), a(τ) = u◦(τ)

The supercircle signifies differentiation with respect to τ . As usual:

u(τ) ∗ u(τ) = 1, u(τ) ∗ a(τ) = 0

Of course, we may assume that:

x(0) = 0

Since T starts from rest, we have:

u(0) = f0

Since T travels with constant acceleration, we have:

a(τ) ∗ a(τ) = −g2

Since T travels in a straight line, we may, without loss of generality, assume
that:

x2(τ) = 0, x3(τ) = 0, 1 ≤ u0(τ)

Hence:
a(0) = gf1
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06◦ At this point, we may summarize our description of the flight of T in
terms of a simple linear ODE:

(

a0(τ)
a1(τ)

)

=

(

0 g
g 0

)(

u0(τ)
u1(τ)

)

;

(

u0(0)
u1(0)

)

=

(

1
0

)

The independent variable τ runs from 0 to τ̄ . We find that::

(

u0(τ)
u1(τ)

)

=

(

cosh(gτ) sinh(gτ)
sinh(gτ) cosh(gτ)

)(

1
0

)

=

(

cosh(gτ)
sinh(gτ)

)

Therefore:
(

x0(τ)
x1(τ)

)

=

(

(1/g)sinh(gτ)
(1/g)cosh(gτ)

)

−

(

0
1/g

)

3 Conclusions

07◦ Now we may infer that d = 2x1(τ̄ ), so that:

(1a) d = (2/g)(cosh(gτ̄)− 1), τ̄ = (1/g)cosh−1(
1

2
gd+ 1)

In turn, one may solve the first of the foregoing relations (implicitly) for g:

(1b) g = φ(d, τ̄ )

By these relations, one may settle the first of the foregoing objectives.

08◦ Finally:

(2) x0(τ̄ ) =
1

g

√

(
1

2
gd+ 1)2 − 1

By this relation, one may settle the second of the foregoing objectives.

09◦ Convert to conventional units.
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