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Filters

01° Let X be any set. By a filter on X, we mean a nonempty family F of
subsets of X which meets the following conditions:

1) 0¢F
(2) FeF,GeF = FNGeF
3) FeF,FCH=HEeF

where F'; G, and H are any subsets of X.

02° It may happen that a nonempty family F, of subsets of X meets con-
ditions (1) and (2) but (perhaps) not (3). In such a case, we introduce the
family F consisting of all subsets G of X such that there is some F' in F for
which F' C G. Obviously, F is a filter on X, as it meets not only conditions
(1) and (2) but also (3). We say that F, generates F.

03° For instance, we may select a member £ of X, then take F, to be the
family consisting of the singleton {£}. In such a case, we refer to the filter
generated by F, as the principal filter on X defined by £. We denote it by
Pe.

04° Let F be afilter on X. Let A and B be subsets of X such that AUB € F.
We contend that if B ¢ F then there is a filter G on X such that:

Fu{Arcg

To prove the contention, we argue as follows. Let us form the family G, of
subsets of X of the form F'NA, where F' runs through F. Obviously, G, meets
condition (2). Moreover, if there were some F' in F for which F N A = () then
FN(AUB) = FNB, so that B would be in F, a contradiction. Consequently,
G, meets condition (1). Now we need only take G to be the filter generated
by Go.

Mazimal Filters

05° Let F be the family of all filters on X. Let us supply F with a partial
ordering, as follows:
FIxF" — FcCF



where 7' and F” are any filters on X. With respect to the partial ordering
on F just defined, we plan to study the maximal filters. These are the filters
U on X such that, for any filter F on X, if Y C F then U = F. Very often,
one refers to such filters as wltrafilters.

06° Obviously, the principal filters on X are maximal with respect to the
foregoing partial ordering. We inquire whether there are any others.

07° Let U be an ultrafilter on X. With reference to article 04°, we find that,
for any subsets A and B of X, if AUB € U then A € U or B € U. We
infer that U meets the partition condition, which is to say that, for any finite
partition:

Ay, Aoy oo Ay

of X there is precisely one index j (1 < j < n) such that A; € U.

08° In fact, the foregoing condition characterizes ultrafilters. To see that it
is s0, let us introduce a filter F on X which meets the partition condition
and let us suppose that F is not maximal. Accordingly, we may introduce a
filter G on X and a subset A of X such that F C G, A¢ F, and A € G. Now
the subset A and its complement B in X form a finite partition of X while
A ¢ F and B ¢ F. Consequently, the supposition is untenable. Hence, F is
maximal.

09° By the foregoing discussion, we infer that, for any ultrafilter &/ on X, if
there is a finite subset F' of X such that F' € U then U is principal.

Existence of Maximal Filters

10° From this point forward, let us assume that X is infinite.

11° Let £ be the filter on X consisting of all subsets F for which the com-
plement F of F in X is finite. In turn, let F, be the family of all filters F on
X such that £ C F.

12* Show that £ is not maximal.

13° By a chain in F,, we mean a subfamily C of F, such that, for any filters

Fand F"in C, F' <X F" or F” X F'. We may say that C is linearly ordered.
For such a family C, we find that:

g=Jc

is a filter in F, and G is an upper bound for C, in the sense that, for each
filter F in C, F C G.



14° By the foregoing observation, we conclude that every chain in F, is
bounded. Now the Lemma of Zorn implies that there exist filters U in F,
which are maximal. Obviously, such filters are maximal in F as well. And
they are not principal.

NonStandard Arithmetic

15° Let N be the standard set of natural numbers, supplied as usual with
the operations of addition and multiplication and the relation of order:

k40, kO, k<?

where k and ¢ are any natural numbers. Of course, N serves as the universe
underlying the standard interpretation I of the preamble 11, for the predicate
logic:

Aa = (Eau Aa)

for Arithmetic. Under this interpretation, the conventional hypotheses H, are

true. We plan to design many other such interpretations, using ultrafilters on
N.

16° Let U be an ultrafilter on N. We presume that U/ is not principal. Let
M be the family of all mappings carrying N to N. We supply M with a
relation, as follows:

f=g <= {keN:f(k)=gk)}telU
where f and g are any mappings in M. Clearly, the relation is reflexive and
symmetric. We contend that it is transitive as well. To shown that it is so,
we introduce mappings f, g, and h in M for which f = ¢g and ¢ = h and we
note that:
{keN: f(k)=gk)}n{keN:g(k)=n(k)} C{keN: f(k)=h(k)}

Hence, f = h. We conclude that the relation is transitive, hence that it is an
equivalence relation.

17° For convenience of expression, we introduce the following abbreviation:
{f=gt={keN:f(k)=gk)}

In retrospect, we find that:

f=g = {f=g}eu



18° Let N be the set of all equivalence classes in M following the foregoing
relation. For each f in M, let [f] denote the equivalence class containing f:

M= N: f = [f]

We declare N to be the underlying universe for an interpretation I of II, and,
to that end, we define operations of addition and multiplication and a relation
of order on N, as follows.

19° For the operations on N, we present the following expressions:

1+ 19l =[f+gl, [fllg] = [fg]

where f and g are mappings in M. To show that the suggested definitions
of the operations are proper, let us introduce mappings f; and f> in [f] and
mappings g; and g2 in [g]. We note that:

{fi=ftn{n=9}C{fi+9=fa+g2}
and:
{fi=fo}n{g1 =92} C{fi91 = f292}
We infer that:
f1+91] =[fa+g2] and [fi1g2] = [f292]

Therefore, the operations are properly defined.

20° For the relation on N, we write:
[f1<lg) = {keN:fk)<gk)}ecl

where f and g are any mappings in M. To show that the suggested definition
of the relation is proper, let us introduce mappings f; and fo in [f] and
mappings g1 and gs in [g]. For convenience of expression, we introduce the
following abbreviation:

{f <gt={keN: f(k) <g(k)}
We note that:

{hi=ftn{g =gtn{fi<an}C{f2<g}
{fi=foyn{gr =g} N{fa<go} C{fi <n}

We infer that:
(Al <lg] <= [f2] <lg2]

Therefore, the relation is properly defined.

21° At this point, the operations and the relation on N are secure. We must
show that hypotheses for Arithmetic are true.

4



22° Let us prepare the way by observing that the standard universe N is
reflected in the nonstandard universe N. We mean to say that there is a
natural injective mapping ¢ carrying N to N, which preserves the operations
of addition and multiplication and the relation of order. It is defined as follows:

o) = [2]

where £ is any natural number and where £ is the mapping in M which assigns
to each natural number k the value £. Obviously:

L0+ 07 =u(0) +u(07), (00) = ()0, O <t = (') <€)
where ¢/ and ¢” are any natural numbers.
Hypotheses for Arithmetic

23° The hypotheses H, stand as follows:

Y((C+n)=m+()

V(¢ xn)=(nx())
V((C+n)+0)=(C+(n+0))
V(((¢xn) x0)=(Cx(nx0))
Y((Cx(n+0))=((Cxn)+(Cx0))

V((¢+0)=¢)

V((E(x1)=¢)

V(((C+0)=m+0) — ((=n)
Y(((Cxn)=0) — (((=0)V(n=0)))

V(¢ £Q)
V((C<mAm<0) — (<0)
VC#EN— (C<n)V(n<()
V((C<n) —(C+0) <(n+0))
V((C<m A0 <8) — ((x0) <(nx0))

For now, we have set aside the hypothesis of Mathematical Induction.



Mathematical Induction

25° Now let us entertain the hypothesis of Mathematical Induction:

¥ ((e(01) A (V) (@ — a((¢ + D)[0)))) — ((V¢)a))

The Theorem of Los

27° Let us consider the relation between semantically definable subsets of N¥
and semantically definable subsets of INY.



