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Chapter 1 METRIC SPACES

01◦ The theory of metric spaces provides a general context for studies of
approximation and convergence. In this section we introduce the definitions
and constructions which underlie the theory.

02◦ Let us adopt the following notation:

Z : the ring of integers
Q : the ordered field of rational numbers
R : the complete ordered field of real numbers
C : the algebraically closed field of complex numbers
T : the circle group in C, comprised of all complex numbers τ

such that |τ | = 1

Metric Spaces

03◦ Let X be an arbitrary set. By a metric on X one means any mapping d
carrying X ×X to R and satisfying the following conditions:

(•) for any x and y in X , 0 ≤ d(x, y); moreover, d(x, y) = 0 iff x = y;
(•) for any x and y in X , d(x, y) = d(y, x);
(•) for any x, y, and z in X , d(x, z) ≤ d(x, y) + d(y, z).

Given x and y in X , one refers to d(x, y) as the distance between x and
y (relative to d). The foregoing conditions characterizing a metric are of
course distilled from common experience with linear measurement in plane
geometry. Remarkably, they are sufficient to set the base for a far-reaching
theory of approximation and convergence.

04◦ By a metric space, one means any ordered pair (X, d), where X is a
set and where d is a metric on X . In practice, one refers to a metric space
(X, d) simply by mentioning the corresponding set X , calling attention to the
specific metric d only when necessary for clarity.

Examples

05◦ Let n be any positive integer. Let d be the cartesian metric on Rn,
defined as follows:

d(u, v) ≡ |u− v| := (

n∑
k=1

|uk − vk|2)1/2 ((u, v) ∈ Rn ×Rn)

Supplied with d, Rn is the cartesian metric space.
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06◦ Let p be any prime positive integer. Let d be the p-adic metric on Z,
defined as follows:

d(j, k) := p−γ ((j, k) ∈ Z× Z)

where γ equals the exponent of p in the prime factorization of |j − k|. When
j = k we interpret d(j, k) to be 0. Supplied with d, Z is the p-adic metric
space.

07◦ Let A be any set. Let M̄(A) be the set of all functions f defined on A
with values in C, for which the range is bounded. Let d be the uniform metric
defined on M̄(A), as follows:

d(f, g) := sup
a∈A

|f(a)− g(a)| ((f, g) ∈ M̄(A)× M̄(A))

Supplied with d, M̄(A) is the uniform metric space on A.

08◦ For each of the foregoing examples of metric spaces, one should of course
verify that the indicated mapping d does in fact satisfy the conditions required
of a metric. In the case of cartesian metric spaces, the third of these conditions
is not obvious. To develop a smooth argument, the reader should review the
general properties of inner products and norms on cartesian spaces.

Open Sets

09◦ Let X be any metric space with metric d. For each x in X and for each
positive real number r, let Nr(x) be the set of all y in X such that d(x, y) < r.
For the case of cartesian metric spaces (notably, when n = 3), one may view
Nr(x) as a ball centered at x with radius r. In general, however, one should
view Nr(x) informally as a neighborhood of x in X , the precise character of
which may be determined only by reference to the metric d. Thus, for the
5-adic metric space Z, N0.01(0) consists of all k in Z for which |k| is divisible
by 53.

10◦ For each subset Y ofX , one may form the subset int(Y ) ofX consisting of
all x in X for which there exists a positive real number r such that Nr(x) ⊆ Y ;
the subset ext(Y ) consisting of all x in X for which there exists a positive
real number r such that Nr(x) ⊆ X\Y ; and the subset per(Y ) consisting of
all x in X such that, for any positive real number r, Nr(x) ∩ Y �= ∅ and
Nr(x) ∩ (X\Y ) �= ∅. These subsets of X are the interior , the exterior , and
the periphery of Y , respectively. They form a partition of X :

X = int(Y ) ∪ per(Y ) ∪ ext(Y )
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11◦ One defines the closure of Y to be int(Y )∪per(Y ), denoting it by clo(Y ):

clo(Y ) = int(Y ) ∪ per(Y )

Clearly, clo(Y ) consists of all members x in X such that, for any positive real
number r, Nr(x) ∩ Y �= ∅. When clo(Y ) = X (so that ext(Y ) = ∅) one says
that Y is dense in X .

12◦ Obviously, for each subset Y of X :

int(Y ) ⊆ Y ⊆ clo(Y )

Moreover:

int(X\Y ) = ext(Y )

per(X\Y ) = per(Y )

X\int(Y ) = clo(X\Y )
X\clo(Y ) = int(X\Y )

Finally:
int(int(Y )) = int(Y ) and clo(clo(Y )) = clo(Y )

13◦ For illustration, let us verify the last of the foregoing relations. Of course,
clo(Y ) ⊆ clo(clo(Y )). Let x be any member of clo(clo(Y )). For any positive
real number r, we may introduce a member y of Nr(x) ∩ clo(Y ). Let s :=
r − d(x, y). For each z in Ns(y):

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + s = r

Hence, Ns(y) ⊆ Nr(x). Obviously, Nr(x) ∩ Y �= ∅. Hence, x ∈ clo(Y ). �

14◦ For any subsets Y ′ and Y ′′ of X :

int(Y ′ ∩ Y ′′) = int(Y ′) ∩ int(Y ′′)
clo(Y ′ ∪ Y ′′) = clo(Y ′) ∪ clo(Y ′′)

In particular, if Y ′ ⊆ Y ′′ then:

int(Y ′) ⊆ int(Y ′′) and clo(Y ′) ⊆ clo(Y ′′)

Topology

15◦ Given a subset Y of X , one says that Y is open iff Y = int(Y ), that
Y is closed iff Y = clo(Y ). By the foregoing observations, it is plain that Y
is open iff X\Y is closed. The family T consisting of all open subsets of X
plays a critical role in the analysis of metric spaces. In the present context,
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one refers to T as the topology on X defined by the metric d. One can easily
verify the following properties of T :

(•) ∅ ∈ T and X ∈ T ;
(•) for each subfamily U of T , ∪ U ∈ T ;
(•) for each finite subfamily U of T , ∩ U ∈ T .

The family of all closed subsets of X has the corresponding complementary
properties.

16◦ One can illustrate the foregoing ideas by referring to the cartesian metric
spaces. We presume that the reader is familiar with such illustrations. Let
us consider a subtler case involving the uniform metric space M̄(A), where A
is some (nonempty) set. Let Y be the subset of M̄(A) consisting of all f in
M̄(A) such that, for each a in A, |f(a)| < 1. Clearly, int(Y ) consists of all f
in M̄(A) for which there exists a real number s such that 0 ≤ s < 1 and such
that, for each a in A, |f(a)| ≤ s. Moreover, clo(Y ) consists of all f in M̄(A)
such that, for each a in A, |f(a)| ≤ 1. Obviously, Y �= clo(Y ). When A is
infinite, int(Y ) �= Y .

17◦ At this point let us prove that, for each x in X and for each positive real
number r, the neighborhood Nr(x) of x in X is open. To that end, we need
only note that, for any y in Nr(x), Ns(y) ⊆ Nr(x), where s := r−d(x, y). See
article 13◦. � Now it is clear that a subset Y of X is open iff it is the union of
some family of neighborhoods in X .

Separable Spaces

18◦ Given a metric space X with metric d and a subfamily V of the topology
T on X defined by d, one says that V is a base for T iff, for each Y in T , there
is a subfamily U of V such that Y = ∪ U . One says that X is separable iff
there is a countable base for T . The following theorem provides an equivalent
formulation of this condition.

Theorem 1 For each metric space X , X is separable iff there is a countable
dense subset of X .

Given a countable base V for T , we may form a countable subset Y of X by
selecting one member from each (nonempty) set in V . Obviously, ext(Y ) = ∅
so Y is dense in X . Conversely, given a countable dense subset Y of X , one
may form the countable subfamily V of T consisting of all neighborhoods in
X of the form Nr(x), where x is any member of Y and where r is any positive

4



rational number. One can readily verify that every open subset of X is the
union of some family of such neighborhoods, so V is a base for T . •

19◦ By the foregoing theorem, it is plain that the cartesian metric space Rn

is separable (because Qn is dense in Rn) and that the p-adic metric space
Z is separable (because Z itself is countable). However, the uniform metric
space M̄(A) proves to be separable iff A is finite.

Convergent Sequences

20◦ Now let X be any metric space. For each sequence ξ in X and for each
x in X , one says that ξ converges to x iff, for any positive real number r, ξ
is eventually in Nr(x), which is to say that there is some k in Z+ such that,
for any j in Z+, if k ≤ j then ξ(j) ∈ Nr(x). We shall often summarize the
foregoing relation between ξ and x by writing ξ → x. One can easily show
that, for any x′ and x′′ in X , if ξ → x′ and ξ → x′′ then x′ = x′′.

21◦ For each sequence ξ in X , one says that ξ is convergent iff there is some
x in X such that ξ → x. One refers to x as the limit of ξ and denotes it by
lim(ξ). Thus, ξ → lim(ξ).

22◦ In practice, one uses the flexible expression:

x = lim
j→∞

ξ(j)

(and variants of it), which simultaneously asserts convergence and names the
limit.

23◦ The subject of convergent sequences in cartesian metric spaces is no
doubt familiar to the reader. However, the cases of p-adic and uniform met-
ric spaces provide unusual illustrations. For the 5-adic metric space Z, the
sequence:

ξ(j) :=

j−1∑
i=0

9 · 10i (j ∈ Z+)

in Z converges to −1. Moreover, for the uniform metric space M̄([ 0, 1)), the
sequence:

ϕ(j)(t) := tj (j ∈ Z+, 0 ≤ t < 1)

in M̄([ 0, 1)) fails to converge (in spite of appearance to the contrary).

24◦ Let ξ be any sequence in X and let x be any member of X . We propose
to prove that if ξ → x then, for each subsequence ρ of ξ, ρ → x. Thus, let ρ
be any subsequence of ξ. By definition, we may introduce an index mapping
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ι carrying Z+ to itself (and satisfying the characteristic condition that, for
each j in Z+, j ≤ ι(j)) such that ρ = ξ · ι. Let r be any positive real number.
Since ξ → x there must be some k in Z+ such that, for each j in Z+, if k ≤ j
then ξ(j) ∈ Nr(x). Hence, for each j in Z+, if k ≤ j then k ≤ ι(j), so that
ρ(j) ∈ Nr(x). Therefore, ρ→ x. � The foregoing simple result may be refined
to produce a useful criterion for convergence. Specifically, we propose to prove
that ξ → x iff, for each subsequence ρ of ξ, there is a subsequence σ of ρ such
that σ → x. Thus, let us suppose that ξ does not converge to x. There must
be some positive real number r such that, for any k in Z+, there is some j
in Z+ for which k ≤ j and ξ(j) /∈ Nr(x). By induction, we may define a
subsequence ρ of ξ such that, for any j in Z+, ρ(j) /∈ Nr(x). Obviously, no
subsequence of ρ may converge to x. These remarks are sufficient to prove
the stated result. �

25◦ The next theorem asserts a practical relation between topology and con-
vergence.

Theorem 2 For any metric space X , for any subset Y of X , and for any
member x of X , x ∈ clo(Y ) iff there is a sequence ξ in Y such that ξ → x.

Let us assume that x ∈ clo(Y ). It follows that, for each positive real number
r, Y ∩Nr(x) �= ∅. Hence, we may introduce a sequence ξ in X such that, for
each j in Z+, ξ(j) ∈ Y ∩ N1/j(x). Obviously, ξ is in Y and ξ → x. Let us
assume that x ∈ ext(Y ). By definition, there is some positive real number
r such that Y ∩ Nr(x) = ∅. Clearly, there can be no sequence in Y which
converges to x. •

Continuous Mappings

26◦ Now let X1 and X2 be arbitrary metric spaces (with metrics d1 and
d2 respectively) and let F be any mapping carrying X1 to X2. Let x be a
member of X1. One says that F is continuous at x iff, for each positive real
number s, there is a positive real number r such that F (Nr(x)) ⊆ Ns(F (x)),
which is to say that, for any y in X1, if d1(x, y) < r then d2(F (x), F (y)) < s.
One says that F is continuous (on X1) iff, for each x in X1, F is continuous
at x. One says that F is uniformly continuous (on X1) iff, for each positive
real number s, there is a positive real number r such that, for any x and y
in X1, if d1(x, y) < r then d2(F (x), F (y)) < s. One says that F is lipschitz
continuous (on X1) iff there is a nonnegative real number c such that, for any
x and y in X1, d2(F (x), F (y)) ≤ cd1(x, y). The least among all such numbers
c is the lipschitz constant for F . Clearly, if F is lipschitz continuous then F is
uniformly continuous, and if F is uniformly continuous then F is continuous.
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27◦ The following theorem provides useful reformulations of the concept of
continuity.

Theorem 3 For any metric spaces X1 and X2, for any mapping F carrying
X1 to X2, and for any member x of X1, F is continuous at x iff, for each
sequence ξ in X1, if ξ → x then F · ξ → F (x). Moreover, F is continuous
on X1 iff F−1(T2) ⊆ T1, which is to say that, for any open subset Y of X2,
F−1(Y ) is an open subset of X1.

Let x be any member of X1. Let us assume that F is continuous at x and
let us consider a sequence ξ in X1 such that ξ converges to x. For each
positive real number s, we may introduce a positive real number r such that
F (Nr(x)) ⊆ Ns(F (x)). Since ξ is eventually in Nr(x), it follows that F · ξ is
eventually in Ns(F (x)). Hence, F · ξ converges to F (x). Now let us assume
that F is not continuous at x. We may introduce a positive real number s
such that, for each positive real number r, F (Nr(x)) �⊆ Ns(F (x)). We may
then define a sequence ξ in X1 such that, for each j in Z+, ξ(j) ∈ N1/j(x) and
F (ξ(j)) /∈ Ns(F (x)). Obviously, ξ converges to x but F · ξ does not converge
to F (x).

Now let us assume that F is continuous on X1 and let us consider an
open subset Y of X2. For each x in F−1(Y ), we may introduce a positive real
number s such that Ns(F (x)) ⊆ Y and in turn a positive real number r such
that F (Nr(x)) ⊆ Ns(F (x)); hence, Nr(x) ⊆ F−1(Y ). It follows that F−1(Y )
is an open subset of X1. Conversely, let us assume that, for each open subset
Y ofX2, F

−1(Y ) is an open subset ofX1. Let x be any member ofX1 and let s
be any positive real number. Clearly, F−1(Ns(F (x))) must be an open subset
of X1, so there is a positive real number r such that Nr(x) ⊆ F−1(Ns(F (x)));
that is, F (Nr(x)) ⊆ Ns(F (x)). Hence, F is continuous at x. It follows that
F is continuous on X1. •

28◦ One can easily prove that any composition of continuous mappings is
continuous, and that the same assertion is true for uniformly continuous and
for lipschitz continuous mappings. Let us formulate in precise terms and prove
the most primitive case of these results. Thus, let X1, X2, and X3 be any
metric spaces, let F be any mapping carrying X1 to X2 and G any mapping
carrying X2 to X3, and let x be any member of X1. We shall prove that if
F is continuous at x and if G is continuous at F (x) then G · F is continuous
at x. Thus, let t be any positive real number. We may introduce a positive
real number s such that G(Ns(F (x))) ⊆ Nt(G(F (x))), and in turn a positive
real number r such that F (Nr(x)) ⊆ Ns(F (x)). Hence, (G · F )(Nr(x)) ⊆
Nt((G · F )(x)). It follows that G · F is continuous at x. �
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29◦ Finally, let us describe four useful relations of equivalence between met-
ric spaces. Let X1 and X2 be any metric spaces (with metrics d1 and d2
respectively) and let H be any bijective mapping carrying X1 to X2. One
says that H is a homeomorphism iff both H and H−1 are continuous, that H
is a uniform homeomorphism iff both H and H−1 are uniformly continuous,
and that H is a lipschitz homeomorphism iff both H and H−1 are lipschitz
continuous. One says that H is an isometry iff, for any x and y in X1,
d2(H(x), H(y)) = d1(x, y). Obviously, the foregoing conditions are of increas-
ing strength. In brief, H is an isometry iff it preserves the metrics; while H
is a homeomorphism iff it preserves the topologies (in the sense that, for each
subset Y of X2, Y is open iff H−1(Y ) is an open subset of X1) iff it preserves
convergent sequences (in the sense that, for any sequence ξ in X1 and for any
member x of X1, ξ → x iff H · ξ → H(x)). The roles of the intermediate
conditions will emerge later.

30◦ In practice, the following refinement of terminology is useful. Thus, letH
be a mapping carrying X1 to X2. One says that H is an isometric embedding
iff, for any x and y in X1, d2(H(x), H(y)) = d1(x, y). One says that X1

and X2 are isometric iff there is an isometry H carrying X1 to X2; that X1

and X2 are lipschitz homeomorphic iff there is a lipschitz homeomorphism H
carrying X1 to X2; that X1 and X2 are uniformly homeomorphic iff there is
a uniform homeomorphism H carrying X1 to X2; and that X1 and X2 are
homeomorphic iff there is a homeomorphism H carrying X1 to X2.

Equivalent Metrics

31◦ One obtains significant special cases when the sets X1 and X2 both co-
incide with a given set X and when H is the identity mapping IX on X . One
says that d1 and d2 are equivalent metrics on X iff IX is a homeomorphism.
Clearly, d1 and d2 are equivalent iff they define the same topologies on X
iff they determine the same convergent sequences and corresponding limits.
That is, for any sequence ξ in X and for any member x of X , ξ → x with
respect to d1 iff ξ → x with respect to d2. One says that d1 and d2 are uni-
formly equivalent iff IX is a uniform homeomorphism, that they are lipschitz
equivalent iff IX is a lipschitz homeomorphism.

32◦ The relation of lipschitz equivalence would be satisfied iff there exist
positive real numbers c′ and c′′ such that:

c′ ≤ d1(x, y)

d2(x, y)
≤ c′′ ((x, y) ∈ X ×X, x �= y)
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In particular, for each positive integer n, the cartesian metric d on Rn is
lipschitz equivalent to the following metric:

d∗(u, v) := max
1≤k≤n

|uk − vk| ((u, v) ∈ Rn ×Rn)

More broadly, one can show that, for any set X and for any metric d on X ,
d is equivalent to each of the following metrics:

d̄(x, y) := min{1, d(x, y)}

d̃(x, y) :=
d(x, y)

1 + d(x, y)

((x, y) ∈ X ×X)

In fact, d is uniformly (but not in general lipschitz) equivalent to d̄. It is
not in general uniformly equivalent to d̃. The ranges of the new metrics are
included in [ 0, 1 ], in some contexts a useful feature.

Diameter and Distance

33◦ Let X be any metric space with metric d. Let Y be any nonempty subset
of X . One says that Y is bounded iff there is a nonnegative real number b
such that, for any y′ and y′′ in Y , d(y′, y′′) ≤ b. Of course, it may happen
that X itself is bounded. In any case, for any bounded subset Y of X , one
defines the diameter of Y as follows:

d(Y ) = sup
y′∈Y, y′′∈Y

d(y′, y′′)

One can easily show that Y is bounded iff there are some x in X and some
positive real number r such that Y ⊆ Nr(x), in which case d(Y ) ≤ 2r.

34◦ Let Y ′ and Y ′′ be any nonempty subsets of X . One defines the distance
between Y ′ and Y ′′ as follows:

d(Y ′, Y ′′) := inf
y′∈Y ′, y′′∈Y ′′

d(y′, y′′)

Obviously, d(Y ′, Y ′′) = d(Y ′′, Y ′).

35◦ Now let Y be any nonempty subset ofX . Let dY be the mapping carrying
X to R, defined as follows:

dY (x) = d({x}, Y ) = inf
y∈Y

d(x, y) (x ∈ X)
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For any x′ and x′′ in X and for any y in Y , dY (x
′) ≤ d(x′, y) ≤ d(x′, x′′) +

d(x′′, y). That is, dY (x
′) − d(x′, x′′) ≤ d(x′′, y). Hence, dY (x

′) − d(x′, x′′) ≤
dY (x

′′). It follows that |dY (x′)−dY (x′′)| ≤ d(x′, x′′). Therefore, dY is lipschitz
continuous on X with lipschitz constant not greater than 1.

36◦ Let r be any positive real number. One may apply the mapping dY to
define the r-neighborhood of Y , as follows:

Nr(Y ) = d−1
Y ((←, r))

For any x in X , x ∈ Nr(Y ) iff dY (x) < r. Obviously, Nr(Y ) is an open subset
of X .

37◦ One can easily check that:

clo(Y ) = d−1
Y ({0}) =

∞⋂
j=1

N1/j(Y )

Separation

38◦ Let X be any metric space, with metric d. Let T be the topology on X
defined by d. Let us prove that X is normal , which is to say that T satisfies
the following conditions:

(•) for any y in X , {y} is closed;
(•) for any subsets Y ′ and Y ′′ of X , if Y ′ and Y ′′ are closed and if

Y ′ ∩ Y ′′ = ∅ then there are subsets Z ′ and Z ′′ of X such that Z ′ and Z ′′ are
open, Y ′ ⊆ Z ′, Y ′′ ⊆ Z ′′, and Z ′ ∩ Z ′′ = ∅.

For the first condition, we simply note that:

clo({y}) = d−1
{y}({0}) = {y}

For the second condition, we introduce the mapping h carrying X to R, as
follows:

h = dY ′(dY ′ + dY ′′)−1

Obviously, for any x in X :

if x ∈ Y ′ then h(x) = 0

if x ∈ X\(Y ′ ∪ Y ′′) then 0 < h(x) < 1

if x ∈ Y ′′ then h(x) = 1

We complete the argument by introducing the subsets Z ′ and Z ′′ of X , as
follows:

Z ′ = h−1((←, 1
3
)), Z ′′ = h−1((

2

3
,→))

�
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Subspaces of Metric Spaces

39◦ Let us turn to a discussion of constructions by which one may build up
new metric spaces from old. Thus, let X be any metric space with metric
d and let Y be a subset of X . Obviously, one obtains a metric on Y by
restricting d to Y × Y . For convenience, we shall denote the new metric by
the old symbol d. One refers to the resulting metric space Y (with metric d)
as a subspace of X . Hereafter, we may regard every subset of a given metric
space as a metric space in its own right.

40◦ Let X be a metric space and Y be a subspace of X . Let T be the
topology on X . One can easily show that the topology on Y equals T ∩ Y ,
which is to say that the open subsets of Y are precisely those of the form
Z ∩ Y , where Z is any open subset of X . Of course, the closed subsets of Y
are precisely those of the form Z ∩ Y , where Z is any closed subset of X .

41◦ Subsets of cartesian metric spaces provide a wide range of examples
of metric spaces. For later reference, let us mention the particular case of
spheres . Thus, for each positive integer n, let Sn denote the subset of Rn+1

consisting of all u in Rn+1 such that d(u, 0) = 1. One refers to the subspace
Sn of Rn+1 as the n-sphere. Of course, S1 may be identified with the circle
group T in C ≡ R2 consisting of all τ in C for which |τ | = 1.

Products of Metric Spaces

42◦ Now let {Xa}a∈A be an indexed family of metric spaces, where A is a
countable set. For each a in A, let da be the given metric on Xa. Let

∏
a∈AXa

denote (as usual) the set of all mappings x̂ carrying A to ∪a∈AXa such that,
for each a in A, x̂(a) ∈ Xa. It may happen that A is a finite set having a
small number of members, for example, A = {1, 2}. In such case, one may
prefer to denote

∏
a∈AXa (as usual) by X1 ×X2. For each a in A, let Pa be

the projection mapping carrying
∏

a∈AXa to Xa:

Pa(x̂) := x̂(a) (a ∈ A, x̂ ∈
∏
a∈A

Xa)

We shall proceed to define a metric δ on
∏

a∈AXa, compatible with the pro-
jection mappings in the sense of the following theorem.

Theorem 4 For each metric space X and for any mapping F carrying X
to

∏
a∈AXa, F is uniformly continuous iff, for each a in A, Pa ·F is uniformly

continuous.
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Thus, let {ca}a∈A be any indexed family of positive real numbers for which∑
a∈A ca is finite. Let δ be the metric defined on

∏
a∈AXa as follows:

δ(x̂, ŷ) :=
∑
a∈A

ca.d̄a(Pa(x̂), Pa(ŷ)) ((x̂, ŷ) ∈
∏
a∈A

Xa ×
∏
a∈A

Xa)

Supplied with δ,
∏

a∈AXa is a metric space. Obviously, for each a in A, Pa

is uniformly continuous. Let X be any metric space and let d be the given
metric on X . Let F be any mapping carrying X to

∏
a∈AXa. Let us assume

that F is uniformly continuous. Clearly, for each a in A, Pa · F is uniformly
continuous. Conversely, let us assume that, for any a in A, Pa ·F is uniformly
continuous. Let s be any positive real number. We may introduce a finite
subset B of A and a positive real number t such that

∑
a∈A\B ca < s/2 and

t
∑

a∈B ca < s/2. By assumption, we can introduce a positive real number
r such that, for any a in B and for any x and y in X , if d(x, y) < r then
d̄a(Pa(F (x)), Pa(F (y)) < t. Hence:

δ(F (x), F (y))

=
∑
a∈A

ca d̄a(Pa(F (x)), Pa(F (y)))

=
∑
a∈B

ca d̄a(Pa(F (x)), Pa(F (y))) +
∑

a∈A\B
ca d̄a(Pa(F (x)), Pa(F (y)))

< t
∑
a∈B

ca +
s

2

< s

It follows that F is uniformly continuous. •

43◦ One refers to the metric space
∏

a∈AXa, supplied with one or another
such metric δ, as the product of the indexed family {Xa}a∈A. While slightly
ambiguous, this specification serves very well because any two such metrics δ′

and δ′′ are uniformly equivalent. One need only apply the foregoing theorem
to the identity mapping carrying

∏
a∈AXa to itself.

44◦ For later reference, let us note that, for any a in A, Xa may be embedded
as a closed subspace of

∏
a∈AXa. Thus, let x̂ be any member of

∏
a∈AXa. Let

Q be the mapping carrying Xa to
∏

a∈AXa such that, for each x in Xa and
for any b in A, Q(x)(b) = x if b = a while Q(x)(b) = x̂(b) if b �= a. Clearly,
Q(Xa) is a closed subset of

∏
a∈AXa and Q is a uniform homeomorphism

carrying Xa to the subspace Q(Xa) of
∏

a∈AXa.

45◦ The construction of products of metric spaces yields, in particular, metric
spaces of the form XA, where X is any given metric space (with metric d)
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and where A is any countable set. In this context, XA is the product of the
indexed family {Xa}a∈A of metric spaces, where, for each a in A, Xa = X
and da = d. Of course, XA consists of all mappings x̂ carrying A to X . When
A = {1, 2, . . . , n} (for a given positive integer n), one usually writes Xn in
place of XA. In particular, we may take X to be Z, Q, R, C, or T, obtaining
for example the important case of the torus TA defined by A.

Metric Spaces of Mappings

46◦ Let us turn to a description of metric spaces of bounded mappings. Thus,
let X1 be an arbitrary set and let X2 be a metric space with metric d2. Let
M̄(X1, X2) be the family of all mappings F carrying X1 to X2 and having
bounded range. We supply M̄(X1, X2) with the uniform metric δ as follows:

δ(F,G) := sup
x∈X1

d2(F (x), G(x)) ((F,G) ∈ M̄(X1, X2)× M̄(X1, X2))

Obviously, the uniform metric spaces introduced earlier are special cases of
this construction. Specifically, M̄(A) = M̄(A,C).

47◦ It may happen that X1 itself is a metric space (with metric d1). In that
case we may introduce the subspace C̄(X1, X2) of M̄(X1, X2) consisting of all
continuous mappings F carrying X1 to X2 and having bounded range. Let
us show that in fact C̄(X1, X2) is a closed subset of M̄(X1, X2). Thus, let Φ
be a sequence in C̄(X1, X2) and let G be a member of M̄(X1, X2). Let us
assume that Φ→ G. Let x be any member of X1 and let s be any positive real
number. We may introduce k in Z+ such that δ(G,Φ(k)) < s/3, which entails
that, for any y in X1, d2(G(y),Φ(k)(y)) < s/3. In turn, we may introduce
a positive real number r such that, for any y in X1, if d1(x, y) < r then
d2(Φ(k)(x),Φ(k)(y)) < s/3. Since:

d2(G(x), G(y))

≤ d2(G(x),Φ(k)(x)) + d2(Φ(k)(x),Φ(k)(y)) + d2(Φ(k)(y), G(y))

it follows that, if d1(x, y) < r then d2(G(x), G(y)) < s. We infer that G is in
C̄(X1, X2), hence that C̄(X1, X2) is a closed subset of M̄(X1, X2). �

48◦ Let us replace the given metric d2 on X2 by the metric d̄2 (uniformly
equivalent to d2), obtaining the metric space X̄2 (uniformly homeomorphic
to X2). Under this modification, the metric space M(X1, X2) := M̄(X1, X̄2)
consists of all mappings carrying X1 to X2. When X1 itself is a metric space,
the metric spaceC(X1, X2) := C̄(X1, X̄2) consists of all continuous mappings
carrying X1 to X2.
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49◦ For simplicity, we will denote M̄(X,C) by M̄(X), M(X,C) by M(X),
C̄(X,C) by C̄(X), and C(X,C) by C(X).

Metric Spaces of Sets

50◦ Finally, let us describe a novel construction of metric spaces, involving
subsets of a given metric space. Thus, let X be any metric space with metric
d. Let H(X) be the family of all nonempty closed bounded subsets of X . For
any members Y ′ and Y ′′ of H(X) and for any positive real number t, let us
say that (Y ′, Y ′′) and t are compatible iff Y ′ ⊆ Nt(Y

′′) and Y ′′ ⊆ Nt(Y
′). For

convenience, we will denote by τ(Y ′, Y ′′) the set of all positive real numbers
t such that (Y ′, Y ′′) and t are compatible. Since Y ′ and Y ′′ are nonempty
and bounded, it is plain that τ(Y ′, Y ′′) is nonempty. We define the hausdorff
metric δ on H(X), as follows:

δ(Y ′, Y ′′) := inf τ(Y ′, Y ′′) ((Y ′, Y ′′) ∈ H(X)×H(X))

Let us verify in detail that δ is a metric on H(X). Thus, let Y ′, Y , and Y ′′

be any members of H(X). Let us assume that δ(Y ′, Y ′′) = 0. It follows that,
for each x′ in Y ′ and for any positive real number s, there is some x′′ in Y ′′

such that d(x′, x′′) < s. Hence, x′ ∈ clo(Y ′′). We infer that Y ′ ⊆ Y ′′. By
similar argument, we infer that Y ′′ ⊆ Y ′. Hence, Y ′ = Y ′′. Of course, it is
plain that τ(Y ′, Y ′′) = τ(Y ′′, Y ′), so δ(Y ′, Y ′′) = δ(Y ′′, Y ′). We conclude the
verification by noting that, for any t′ in τ(Y ′, Y ) and for any t′′ in τ(Y, Y ′′),
t′ + t′′ ∈ τ(Y ′, Y ′′). Hence, δ(Y ′, Y ′′) ≤ δ(Y ′, Y ) + δ(Y, Y ′′). �

Problems

01• Let X be a metric space, with metric d. Of course, d is a mapping
carrying the product space X ×X to R. Prove that d is continuous.

02• Prove that, for each sequence ξ in R, there is a subsequence ρ of ξ which
is monotone, in the sense that either, for each j in Z+, ρ(j) ≤ ρ(j+1) or, for
each j in Z+, ρ(j + 1) ≤ ρ(j).

03• Let ρ be a sequence in R which is subadditive, in the sense that, for any
j and k in Z+, ρ(j + k) ≤ ρ(j) + ρ(k). Prove that:

lim
k→∞

(1/k)ρ(k) = inf
j∈Z+

(1/j)ρ(j)
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When the indicated infimum is −∞ one should make the obvious interpreta-
tion. [ Let j and k be any positive integers for which j < k and let a and b be
the integers for which 0 < a, 0 ≤ b < j, and k = aj + b. Note that:

(1/k)ρ(k) ≤ (1/k)(aρ(j) + ρ(b)) = (aj/k)(1/j)ρ(j) + (1/k)ρ(b)

By judicious passage to limit, prove the result. ]

04• Let p be a prime positive integer. Let Z be the p-adic metric space with
p-adic metric d. Prove that, for any j and k in Z and for any positive real
number r, if d(j, k) < r then Nr(j) = Nr(k).

05• Let p and q be distinct prime positive integers. Prove that the p-adic
metric d′ and the q-adic metric d′′ on Z are not equivalent.

06• Let X1 andX2 be metric spaces and let F and G be continuous mappings
carrying X1 to X2. Let Y be the subset of X1 consisting of all x in X1 such
that F (x) = G(x). Prove that Y is closed.

07• Let Xo be a metric space, with metric d. One says that Xo is discrete
iff every subset of Xo is open. Prove that Xo is discrete iff d is equivalent to
the discrete metric do on Xo, defined by the condition that, for any (x, y) in
Xo × Xo, do(x, y) = 1 iff x �= y. Note that, if Xo is discrete then, for any
sequence ξ in Xo, ξ is convergent iff it is eventually constant .

08• Let X be a metric space and let Y be a subspace of X . Prove that if X
is separable then Y is separable.

09• Let {Xa}a∈A be an indexed family of (nonempty) metric spaces, where
A is (nonempty and) countable. Prove that the product

∏
a∈AXa of {Xa}a∈A

is separable iff, for each a in A, Xa is separable.

Connected Spaces

10• Let X be a metric space. One says that a subset Y of X is clopen iff it is
both closed and open. In particular, both ∅ and X are clopen. When ∅ and
X are the only clopen subsets of X one says that X is connected. Prove that,
for any positive integer n, Rn is connected.

11• Prove that, for any subspace Y of R, Y is connected iff Y is an interval
in R.

12• Let p be any prime positive integer. Show that the p-adic metric space
Z is not connected. In fact, show that, for any j in Z and for any positive
real number r, Nr(j) is clopen.
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13• Let X1 and X2 be metric spaces and let F be a continuous surjective
mapping carrying X1 to X2. Prove that if X1 is connected then X2 is con-
nected. As a consequence, note that if X1 and X2 are homeomorphic then
X1 is connected iff X2 is connected.

14• Let X be a metric space. Prove that X is connected iff, for each discrete
metric space Xo and for any continuous mapping F carrying X to Xo, F is
constant.

15• Let X be a metric space and let Y be a subspace of X . Prove that if Y
is connected then clo(Y ) is connected.

16• Let {Xa}a∈A be an indexed family of (nonempty) metric spaces, where
A is (nonempty and) countable. Prove that the product

∏
a∈AXa of {Xa}a∈A

is connected iff, for each a in A, Xa is connected.

17• Let X be a metric space. By a connected component of X , one means
any connected subset Y of such that, for any connected subset Z of X , if
Y ⊆ Z then Y = Z. Prove that the family of all connected components of X
is a partition of X . [ Let Γ be the relation on X consisting of all ordered pairs
(x, y) in X × X for which there is some connected subset Z of X such that
x ∈ Z and y ∈ Z. Prove that Γ is an equivalence relation on X and that the
equivalence classes in X following Γ are precisely the connected components
of X . To that end, note that, for any family V of connected subsets of X , if
∩V �= ∅ then ∪V is connected. ]

18• Let X be a metric space. One says that X is totally disconnected iff the
clopen subsets of X form a base for the topology T on X . Prove that if X is
totally disconnected then the connected components of X are the singletons.
That is, for each nonempty connected subset Y of X , there is some y in X
such that Y = {y}. [ See the preceding problem. ] Construct an example to
show that in general the converse implication is false. However, with reference
to Section 3, prove that if X is compact and if the connected components of
X are the singletons then X is totally disconnected.

Isometric Embeddings

19• Let X be a metric space, with metric d. Let y be any member of X . Let
H be the mapping carrying X to C̄(X), defined as follows:

H(x) := d{x} − d{y} (x ∈ X)
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Prove that H is an isometric embedding. [ By article 35◦, H(x) is, indeed,
continuous. Moreover, for any z in X , H(x)(z) = d(x, z) − d(y, z) ≤ d(x, y).
Hence, H(x) is, indeed, bounded. Finally, for any x′, x′′, and z in X :

H(x′)(z)−H(x′′)(z) = d(x′, z)−d(x′′, z) ≤ d(x′, x′′) ≤ H(x′)(x′′)−H(x′′)(x′′)

Hence, H is an isometric embedding. � ]

Partitions of Unity

20• Let X be a metric space. Let C+(X) be the family of all continuous
functions defined on X with values in R, for which the values are nonnegative.
For each h in C+(X), let ρ(h) be subset of X consisting of all x such that
0 < h(x). Let σ(h) := clo(ρ(h)). One refers to σ(h) as the support of h.
Prove that, for any finite set A and for any indexed family {Ya}a∈A of open
subsets of X , if ∪a∈AYa = X then there is an indexed family {ha}a∈A in
C+(X) such that, for each a in A, σ(ha) ⊆ Ya and such that

∑
a∈A ha = 1.

With reference to the latter conclusion, one says that {ha}a∈A is a partition of
unity for X ; with reference to the former, that {ha}a∈A is subordinate to the
given indexed family {Ya}a∈A. [ First prove that, for any finite set A, for any
indexed family {Y ′

a}a∈A of open subsets of X , and for any closed subset Z of
X , if Z ⊆ ∪a∈AY

′
a then there is an indexed family {Y ′′

a }a∈A of open subsets
of X such that, for any a in A, clo(Y ′′

a ) ⊆ Y ′
a and such that Z ⊆ ∪a∈AY

′′
a .

To that end, argue by induction on the number of members of A. Taking Z
to be X , apply this process of refinement to {Ya}a∈A twice in turn, to obtain
indexed families {Y ′

a}a∈A and {Y ′′
a }a∈A of open subsets of X such that, for

any a in A, clo(Y ′′
a ) ⊆ Y ′

a and clo(Y ′
a) ⊆ Ya and such that ∪a∈AY

′′
a = X .

For each a, introduce a member ga of C+(X) such that, for any x in X , if
x ∈ X\Y ′

a then ga(x) = 0 and if x ∈ Y ′′
a then ga(x) = 1. Let g :=

∑
a∈A ga.

Note that, for any x in X , 0 < g(x). Finally, for each a in A, let ha := g−1ga.
Verify that the indexed family {ha}a∈A in C+(X) responds to the original
question. ]
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Chapter 2 COMPLETE SPACES

01◦ For the development of more substantial results in the theory of metric
spaces, such as Baire’s Theorem and Stone’s Theorem, one must concentrate
upon spaces having a rich supply of convergent sequences. The most impor-
tant cases are the complete metric spaces and the compact metric spaces. We
shall devote the present section to the former case and the following to the
latter.

Definitions

02◦ Let X be a metric space, with metric d, and let ξ be a sequence in
X . One says that ξ is cauchy iff, for each positive real number r, there is a
(nonempty) subset Y of X such that d(Y ) ≤ r and such that ξ is eventually
in Y . Obviously, ξ is cauchy iff, for each positive real number r, there is
some k in Z+ such that, for any j′ and j′′ in Z+, if k ≤ j′ and k ≤ j′′ then
d(ξ(j′), ξ(j′′)) ≤ r.

03◦ Clearly, if ξ is convergent then it is cauchy, because, for each positive real
number r, d(Nr/2(lim(ξ))) ≤ r. But, in spite of appearance to the contrary,
the converse assertion is in general false. For example, the sequence:

ξ(k) :=
k∑

j=1

5j (k ∈ Z+)

in the 5-adic metric space Z is cauchy but not convergent. When every cauchy
sequence in X is in fact convergent one says that X is complete.

04◦ We presume that the reader is familiar with the fundamental arguments
by which one proves that, for each positive integer n, Rn is complete.

05◦ For the practical task of proving that a given cauchy sequence is conver-
gent, the following remarks can be helpful. For any sequence ξ in X and for
any positive real number s, let us say that ξ is s-geometric iff, for each j in
Z+, d(ξ(j), ξ(j + 1)) ≤ sj . One can easily verify that if ξ is s-geometric and
if s < 1 then ξ is cauchy. Moreover, if ξ is cauchy then, for any positive real
number s, one may introduce (by induction) a subsequence ρ of ξ which is
s-geometric. Finally, if ξ is cauchy and if there is a subsequence ρ of ξ which
is convergent then in fact ξ itself is convergent. To prove the assertion just
made, we argue as follows. Let x := lim(ρ) and let ι be an index mapping
carrying Z+ to itself such that ρ = ξ · ι. For any positive real number r, we
may introduce k′ in Z+ such that, for any j′ and j′′ in Z+, if k′ ≤ j′ and
k′ ≤ j′′ then d(ξ(j′), ξ(j′′)) ≤ r/2. We may also introduce k′′ in Z+ such that,
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for any j in Z+, if k′′ ≤ j then d(x, ρ(j)) < r/2. Let k be the larger of k′ and
k′′. Now, for any j in Z+, if k ≤ j (so that k ≤ ι(j)) then:

d(x, ξ(j)) ≤ d(x, ρ(j)) + d(ξ(ι(j)), ξ(j)) < r

Hence, ξ converges to x. � Consequently, when confronted with the task of
proving that a given metric space X is complete, one may (if useful) restrict
attention to s-geometric sequences (where s is any prescribed positive real
number).

06◦ At this point, let us note that the condition of completeness for a metric
space X is specific not to the topology on X but to the given metric on X .
More precisely, two metric spaces X1 and X2 may be homeomorphic while X1

is complete but X2 is not. For example, the mapping:

H(x) := x/(1 + |x|) (x ∈ R)

is a homeomorphism carrying the cartesian metric space R to the subspace
(−1, 1) of R. Of course, the former is complete but the latter is not. However,
when X1 and X2 are uniformly homeomorphic, one can easily show that X1 is
complete iff X2 is complete. Similarly, for a given set X , two metrics d1 and
d2 on X may be equivalent while, with respect to d1, X is complete but, with
respect to d2, it is not. However, when d1 and d2 are uniformly equivalent,
X is complete with respect to the one iff it is complete with respect to the
other.

Pōlish Metric Spaces

07◦ The foregoing observations suggest an interesting generalization of the
concept of complete metric space. Thus, one says that a metric space X
(with metric d′) is pōlish iff there is a metric d′′ on X such that d′ and d′′

are equivalent and such that, with respect to d′′, X is complete. Of course,
the condition that X be pōlish is specific not to the given metric on X but
to the topology on X . The following theorem shows that this concept has
substantial scope.

Theorem 5 For any complete metric space X and for any countable family
U of open subsets of X , the subspace Y := ∩ U of X is pōlish.

Let d be the given metric on X . For each U in U , let dU be the metric on U
defined as follows:

dU (x, y) := d(x, y) +
∣∣∣ 1

dX\U (x)
− 1

dX\U (y)

∣∣∣ ((x, y) ∈ U × U)
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Regarding d as a metric on U , one may easily prove that d and dU are equiv-
alent. Moreover, for each sequence ξ in U , if ξ is cauchy relative to dU then
ξ is cauchy relative to d. Hence, there is some x in X such that ξ → x rel-
ative to d. But x must in fact be in U . Otherwise, ξ would not be bounded
relative to dU . It follows that the metric space U with metric dU is complete.
Let us introduce the product

∏
U∈U U of the indexed family {U}U∈U and the

following mapping F carrying Y to
∏

U∈U U :

F (x)(U) := x (x ∈ Y, U ∈ U)

Clearly, F (Y ) is a closed subset of
∏

U∈U U and F carries Y homeomorphically
to the subspace F (Y ) of

∏
U∈U U . Now one may conclude that Y is pōlish

by applying Theorems 6 and 7, soon to follow. •

Completeness Theorems

08◦ With regard to the condition of completeness, let us now review the
various constructions of metric spaces discussed earlier. We shall formulate
the basic results as a string of theorems.

Theorem 6 For any metric space X and for any subspace Y of X , if Y
is complete then Y is closed. If X is complete and Y is closed then Y is
complete.

The proof of this theorem requires only routine observations. •

Theorem 7 For any indexed family {Xa}a∈A of (nonempty) metric spaces
(where A is a countable set), the product

∏
a∈AXa of {Xa}a∈A is complete

iff, for each a in A, Xa is complete.

Let us assume that
∏

a∈AXa is complete. For each a in A, Xa may be
identified by a uniform homeomorphism with a closed subspace of

∏
a∈AXa.

See article 45◦ in Chapter 1. Hence, by Theorem 6, Xa is complete. Now let
us assume that, for each a in A, Xa is complete. Let ξ be a cauchy sequence
in

∏
a∈AXa. For each a in A, the projection mapping Pa carrying

∏
a∈AXa

to Xa is uniformly continuous. It follows that Pa · ξ is a cauchy sequence in
Xa, hence that Pa · ξ is convergent. Therefore, ξ is convergent. •

Theorem 8 For any set X1 and for any metric space X2, if X2 is complete
then M̄(X1, X2) is complete.
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Let d2 be the given metric on X2 (with respect to which X2 is complete)
and let δ be the uniform metric on M̄(X1, X2). Let Φ be a cauchy sequence
in M̄(X1, X2). Let s be a real number for which 0 < s < 1. For the task
of proving that M̄(X1, X2) is complete, we may as well assume that Φ is s-
geometric. That is, we may assume that, for each j in Z+, δ(Φ(j),Φ(j+1)) ≤
sj . For each x inX1, let Φ(x) be the sequence inX2 such that, for each j in Z+,
Φ(x)(j) = Φ(j)(x). Obviously, for each j in Z+, d2(Φ(x)(j),Φ(x)(j+1)) ≤ sj,
so that, for each j and k in Z+, if j ≤ k then:

d2(Φ(x)(j),Φ(x)(k)) ≤ sj/(1− s)

Hence, Φ(x) is cauchy, therefore convergent. Let F be the mapping carrying
X1 to X2 such that, for each x in X1, F (x) = lim(Φ(x)). Clearly, for each x
in X1 and for any j in Z+:

d2(Φ(j)(x), F (x)) ≤ sj/(1− s)

Now it is plain that the range of F is bounded (so that F is in M̄(X1, X2))
and that Φ→ F . •

Theorem 9 For any metric space X , if X is complete then H(X) is com-
plete.

Let d be the given metric on X (with respect to which X is complete) and
let δ be the hausdorff metric on H(X). Let Υ be a cauchy sequence in H(X).
Let r, s, and t be real numbers for which 0 < r < s < t < 1. For the task of
proving that H(X) is complete, we may as well assume that Υ is r-geometric.
That is, we may as well assume that, for each j in Z+, δ(Υ(j),Υ(j+1)) ≤ rj ,
which entails that:

Υ(j) ⊆ Nsj (Υ(j + 1)) and Υ(j + 1) ⊆ Nsj (Υ(j))

Hence, for any j and k in Z+, if j ≤ k then:

Υ(j) ⊆ Nsj/(1−s)(Υ(k)) and Υ(k) ⊆ Nsj/(1−s)(Υ(j)).

We shall argue that the subset:

Y :=

∞⋂
j=1

clo(

∞⋃
k=j

Υ(k))
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of X is in H(X) and that Υ→ Y . Obviously, Y is closed. Moreover, for each
j in Z+:

∞⋃
k=j

Υ(k) ⊆ Nsj/(1−s)(Υ(j)) hence clo(

∞⋃
k=j

Υ(k)) ⊆ Ntj/(1−t)(Υ(j))

Therefore:
Y ⊆ Ntj/(1−t)(Υ(j))

In particular, Y is bounded. Further, for each j in Z+ and for any x in Υ(j),
we may define (by induction) a sequence ξ in X such that ξ(j) = x and, for
any k in Z+, if j ≤ k then ξ(k) ∈ Υ(k) and d(ξ(k), ξ(k + 1)) < sk. It follows
that ξ is convergent, that lim(ξ) ∈ Y , and that d(x, lim(ξ)) < sj/(1−s). Now
it is plain that Y �= ∅ and that, for any j in Z+:

Υ(j) ⊆ Nsj/(1−s)(Y )

Clearly, Y is in H(X) and Υ→ Y . •

09◦ As an important consequence of Theorem 8, let us note that if X1 itself
is a metric space and if X2 is complete then C̄(X1, X2) is complete, because
it is a closed subset of M̄(X1, X2).

The Theorem of Baire

10◦ Let us finish this section by presenting two fundamental assertions about
complete metric spaces: first Baire’s Theorem, then the Contraction Mapping
Theorem.

Theorem 10 For any complete metric space X and for any countable fam-
ily U of open dense subsets of X , Y := ∩ U is a dense subset of X .

Let us suppose that Y is not dense in X . Accordingly, we may introduce a
closed subset V0 of X such that int(V0) �= ∅ and V0 ∩ Y = ∅. Let Υ be a
surjective mapping carrying Z+ to U . By induction, we may define sequences
ξ in X and ρ in R+ such that:

Vj := clo(Nρ(j)(ξ(j))) ⊆ Vj−1 ∩Υ(j) (j ∈ Z+)

and such that ρ→ 0. Clearly, ξ is cauchy (hence convergent) and lim(ξ) ∈ V0.
However:

lim(ξ) ∈
∞⋂
j=1

Vj ⊆
∞⋂
j=1

Υ(j) = Y
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This contradiction indicates that Y must be dense in X . •

The Contraction Mapping Theorem

11◦ Let X be any metric space and let F be a mapping carrying X to itself.
One says that F is a contraction mapping iff it is lipschitz continuous and its
lipschitz constant c is less than 1.

Theorem 11 For any complete metric space X (with metric d) and for any
contraction mapping F carrying X to itself, there is precisely one member x
of X such that F (x) = x. In fact, for each y in X :

d(y, x) ≤ (1− c)−1d(y, F (y))

For any y in X , let ξ be the sequence in X such that, for each j in Z+,
ξ(j) = F j(y). Obviously, for each nonnegative integer j, d(F j(y), F j+1(y)) ≤
cjd(y, F (y)). Hence, for any nonnegative integers j and k, if j < k then:

d(F j(y), F k(y)) ≤ cj(1− c)−1d(y, F (y))

It follows that ξ is a cauchy sequence. Let x := lim(ξ). Clearly, F · ξ is
a subsequence of ξ. Hence, F (x) = x. The displayed relation entails that
d(y, x) ≤ (1− c)−1d(y, F (y)). •

12◦ The practical significance of the foregoing two theorems will be apparent
in subsequent applications. For now, let us simply note that in the context
of a given complete metric space X they both have the character of an exis-
tence theorem, in that they guarantee the existence of members of X having
particular properties. In the first case, one may imagine a countable family of
conditions on the members of X each of which defines an open dense (one may
say generic) subset of X . Baire’s Theorem asserts that there exist (numerous)
members of X which satisfy all the conditions. See Problem 7•. In the second
case, one may imagine a mapping carrying X to itself for which the fixed
points of the mapping correspond to solutions of a significant problem. The
Contraction Mapping Theorem asserts that if the mapping is a contraction
mapping then the problem admits a unique solution. See Problem 8• and, in
Chapter 3, Problem 15•.
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Problems

Standard Spaces

01• By a standard space we mean any metric spaceX which is both separable
and pōlish. Prove that, for any standard space X and for any countable family
U of open subsets of X , Y := ∩ U is standard. In particular, for any countable
subset Z of X , X\Z is standard. Conclude that, for any positive integer n,
the subspace Rn\Qn of Rn is standard.

02• Let {Xa}a∈A be an indexed family of (nonempty) metric spaces, where
A is (nonempty and) countable. Prove that

∏
a∈AXa is standard iff, for each

a in A, Xa is standard.

Perfect Spaces

03• Let X be a metric space with metric d. One says that X is perfect iff,
for any x in X , X = clo(X\{x}). Given a member x of X , one says that x is
isolated in X iff there is some positive real number r such that Nr(x) = {x}.
Obviously, X is perfect iff there are no isolated members ofX . Now let X be a
standard space. Prove that there is a subspace Y of X such that Y is standard
and perfect and such that X\Y is countable. This result is a variation on the
Theorem of Cantor and Bendixon. [ Let Y be the subset of X consisting of all
members y such that, for any positive real number r, Nr(y) is uncountable.
Clearly, Y is closed and perfect. Prove that Z := X\Y is countable. To that
end, suppose the contrary and apply Theorem 5 to define a metric d′ on Z
equivalent to d, with respect to which Z is complete. Design a sequence Υ of
subsets of Z such that, for each j in Z+, Υ(j) is uncountable, d′(Υ(j)) ≤ 1/j,
and Υ(j+1) ⊆ Υ(j). In turn, introduce a sequence ψ in Z such that, for each
j in Z+, ψ(j) ∈ Υ(j). Clearly, ψ is cauchy (relative to d′) and lim(ψ) ∈ Y ∩Z,
a contradiction. ]

04• Let X be a metric space. Prove that if X is pōlish and perfect then X
must be uncountable. [ Apply the Theorem of Baire. ] Conclude that, for any
positive integer n, Qn is not pōlish.

05• Let X1 and X2 be metric spaces, let K̄(X1, X2) be the subspace of
M̄(X1, X2) consisting of all uniformly continuous mappings carryingX1 to X2

and having bounded range, and let L̄(X1, X2) be the subspace of M̄(X1, X2)
consisting of all lipschitz continuous mappings carrying X1 to X2 and having
bounded range,. Prove that K̄(X1, X2) is a closed subset of M̄(X1, X2). Con-
clude that if X2 is complete then K̄(X1, X2) is complete. Show by example
that L̄(X1, X2) need not be a closed subset of M̄(X1, X2).
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Completions

06• Let X be a metric space with metric d. Of course, the metric space
C̄(X,R), with uniform metric δ, is complete. Let y be any member of X and
let H be the mapping carrying X to C̄(X) defined as follows:

H(x) := d{x} − d{y} (x ∈ X)

With reference to Problem 19• in Chapter 1, note that H is an isometric
embedding. Let X := H(X) and Ξ := clo(H(X)) be the corresponding
subspaces of C̄(X). Note that X and X are isometric, X is dense in Ξ,
and Ξ is complete. In such a context, one refers to Ξ as a completion of
X . Such a completion is unique, in the following sense. Let Ξ1 and Ξ2 be
complete metric spaces. Let X1 be a dense subspace of Ξ1. Prove that, for
any uniformly continuous mapping F carrying X1 to Ξ2, there is precisely one
uniformly continuous mapping Φ carrying Ξ1 to Ξ2 such that, for each x in X1,
Φ(x) = F (x). Prove that if F is an isometric embedding and if X2 := F (X1)
is dense in Ξ2 then Φ is an isometry.

Continuous, Nowhere Differentiable Functions

07• Let C1(R) be the subspace of C̄(R) comprised of all (bounded continu-
ous) functions f defined on R with values in C such that:

f(x+ 1) = f(x) (x ∈ R)

One says that such functions are periodic with period 1. Show that C1(R)
is a closed subset of C̄(R), hence a complete metric space. For each positive
integer j, let Dj be the subset of C1(R) comprised of all functions f for which
there is some x in R such that, for any y in R\{0}:

∣∣1
y

(
f(x+ y)− f(x)

)∣∣ ≤ j
Show that Dj is a closed subset of C1(R) and that int(Dj) = ∅. Infer that
C1(R)\Dj is an open dense subset of C1(R). Apply the Theorem of Baire
to show that:

Γ = C1(R) \
⋃

j∈Z+

Dj

is dense in C1(R). Finally, show that, for any f in Γ and for any x in R,
f fails to be differentiable at x. Hence, for any g in C1(R) and for any
positive real number ε, there is some f in C1(R) such that, for any x in R,
|g(x)− f(x)| ≤ ε and, for any x in R, f is not differentiable at x.
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Autonomous First Order Ordinary Differential Equations

08• Let n be a positive integer. Let V be an open subset of Rn and let F be
a mapping carrying V to Rn. Let w be a member of V , let s be a number in
R, let J be an open interval in R containing s, and let γ be a differentiable
mapping carrying J to Rn for which γ(J) ⊆ V . One says that γ is an integral

curve for F passing through w at time s iff:

(◦) γ◦(t) = F (γ(t)) (t ∈ J)

(•) γ(s) = w

One refers to relation (◦) as the Ordinary Differential Equation (ODE) defined
by (the Velocity Field) F and to relation (•) as an Initial Condition. One says
that the ODE is Autonomous because F does not depend explicitly upon the
time t and one says that it is First Order because nothing more than γ and
γ◦ figure in it.

F (γ(t))

γ(t)

Integral Curve

One may express the relations (◦) and (•) in coordinates as follows:

(◦)

γ◦1 (t) = F1(γ1(t), γ2(t), . . . , γn(t))

γ◦2 (t) = F2(γ1(t), γ2(t), . . . , γn(t))

...

γ◦n(t) = Fn(γ1(t), γ2(t), . . . , γn(t))

(t ∈ J)
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(•)

γ1(0) = w1

γ2(0) = w2

...

γk(0) = wn

Often, one adopts informal notation, such as the following:

(◦) x◦ = F (x) or

x◦1 = F1(x1, x2, . . . , xn)

x◦2 = F2(x1, x2, . . . , xn)

...

x◦n = Fn(x1, x2, . . . , xn)

In such cases, one identifies the mapping γ with the vector variable x, which
depends (implicitly) on t.

The Fundamental Theorem

The Fundamental Theorem for Autonomous First Order ODEs asserts that,
for each number s in R and for each member w of V , there exists an integral
curve γ̂ for F passing through w at time s such that, for any integral curve γ
for F passing through w at time s, γ is a restriction of γ̂. That is, the domain
J of γ is a subset of the domain Ĵ of γ̂ and, for each t in J , γ(t) = γ̂(t). One
refers to γ̂ as the maximum integral curve for F passing through w at time s.

Proof of the Fundamental Theorem

We hasten to add that the Fundamental Theorem requires an hypothesis,
which constrains the rate of change of F . Specifically, one requires that F
be locally lipschitz continuous. That is, for each member w of V , there are
positive numbers r and c such that N̄r(w) ⊆ V and such that, for any members
x and y of N̄r(w):

|F (x) − F (y)| ≤ c |x− y|

(In this context, we take N̄r(w) to stand for the closure of Nr(w) in Rn,
consisting of all members z such that |z− x| ≤ r.) It would be necessary that
F be continuous. It would be sufficient that F be continuously differentiable,
but the more general requirement is useful.

Let us prove the theorem. For that purpose, we will apply the Contraction
Mapping Theorem for complete metric spaces. Let s be a number in R, let w
be a member of V , let J be an open interval in R, and let γ be a continuous
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mapping carrying J to Rn for which γ(J) ⊆ V . Obviously, γ is an integral
curve for F passing through w at time s iff:

(∗) γ(t) = w +

∫ t

s

F (γ(u))du (t ∈ J)

One should see in the foregoing relation a suggestion of a fixed point.

Let r, b, and c be a positive numbers such that N̄r(w) ⊆ V and such that, for
any members x, y, and z of N̄r(w):

|F (x)| ≤ b and |F (y)− F (z)| ≤ c |y − z|

Let σ be a positive number such that σb ≤ r and σc < 1. Let X be the family:

X := M
(
(s− σ, s+ σ), N̄r(w)

)

composed of all continuous mappings α carrying (s− σ, s+ σ) to N̄r(w). We
may supply X with the uniform metric d, as follows:

d(α1, α2) := sup{|α1(t)− α2(t)| : s− σ < t < s+ σ}

where α1 and α2 are any mappings in X. By Theorem 8, X is complete.
For each α in X, let β be the mapping carrying (s− σ, s+ σ) to Rn, defined
as follows:

β(t) := w +

∫ t

s

F (α(u))du (s− σ < t < s+ σ)

One can easily verify that β is in X. Having done so, one may introduce the
mapping F carrying X to itself, defined as follows:

F(α) := β (α ∈ X)

One can easily verify that F is a contraction mapping. In fact, for any mem-
bers α1 and α2 of X, one can show that:

d(F(α1),F(α2)) ≤ σcd(α1, α2)

Consequently, by the Contraction Mapping Theorem, there is precisely one
γ in X such that F(γ) = γ. Obviously, γ is an integral curve for F passing
through w at time s. The domain of γ is (s− σ, s + σ).

By careful application of the foregoing result, one may proceed to prove the
mature form of the Fundamental Theorem. Let us sketch the steps. First,
one must prove that, for any number s in R, for any open intervals J1 and
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J2 in R, and for any integral curves γ1 and γ2 for F with domains J1 and J2,
respectively, if s ∈ J1 ∩ J2 and if γ1(s) = γ2(s) then there is a positive real
number τ such that (s−τ, s+τ) ⊆ J1∩J2 and such that the restrictions of γ1
and γ2 to (s−τ, s+τ) coincide. Second, one must prove that, for any number
s in R, for any member w of V , for any open intervals J1 and J2 in R, and
for any integral curves γ1 and γ2 for F with domains J1 and J2, respectively,
if s ∈ J1 ∩J2 and if γ1(s) = γ2(s) then the restrictions of γ1 and γ2 to J1 ∩J2
coincide. Finally, one may prove the Fundamental Theorem. That is, one
may prove that, for any number s in R and for any member w of V , there is
a maximum integral curve γ for F passing through w at time s.

Just as well, we might set q = (1/2)r, we might select ρ so that ρ b ≤ q and
ρ c < 1, and we might replace w by any member v of N̄q(w). The foregoing
argument would remain valid. We would obtain a fixed point γ for F. Of
course, γ would be an integral curve for F passing through v at time s, with
domain (s− ρ, s+ ρ). We may infer that:

D := (s− ρ, s+ ρ)× N̄q(w) ⊆ ∆

One refers to D as a Flow Box for F .

The Flow

Let w be a member of V . Let γw be the maximum integral curve for F passing
through w at time 0 and let Jw be the domain of γw. One defines the flow
domain ∆ for F as follows:

∆ := { (t, w) ∈ R× V : w ∈ V, t ∈ Jw }

By the preceding article, it is plain that ∆ is an open subset of R × V . In
turn, one defines the flow mapping γ for F , carrying ∆ to V , as follows:

γ(t, w) := γw(t) ((t, w) ∈ ∆)

For any real number t, one may introduce the (open) subset Vt of V consisting
of all members w for which (t, w) ∈ ∆ and one may define the mapping:

γt(w) := γ(t, w) (w ∈ Vt)

carrying Vt to V . The mappings γt and γw emphasize different aspects of the
flow mapping γ, by fixing t while w varies and by fixing w while t varies.
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Escape to the Boundary

Let x be a member of V and let γx be the maximal integral curve for F passing
through x at time 0, with domain:

Jx = (ax, bx) (−∞ ≤ ax < 0 < bx ≤ ∞)

We say that γx future escapes to the boundary of V iff, for each compact
subset M of V , there is some τ in Jx such that:

γx([τ, bx)) ∩M = ∅

Let us assume that bx < ∞. We contend that γx future escapes to the
boundary of V .

Let us suppose, to the contrary, that there is a compact subset M of V such
that, for each τ in Jx, γx([ τ, bx)) ∩M �= ∅. Hence, we may introduce an
increasing sequence:

t1 < t2 < · · · < tj < · · · ↑ bx

in Jx, converging to bx, such that, for each index j, γx(tj) ∈ M . Since M is
compact, we may apply the Bolzano/Weierstrass Theorem. In effect, we may
take the sequence:

γx(t1), γx(t2), . . . , γx(tj), . . .

in M to be convergent:

γx(tj) −→ w, w ∈M

By our discussion of flow boxes, we may introduce positive numbers q and ρ
such that:

(−ρ, ρ)× N̄q(w) ⊆ ∆

Obviously, for each y in N̄q(w), (−ρ, ρ) ⊆ Jy. That is, the maximal integral
curve γy for F passing through y at time 0 must be defined at least on the
open interval (−ρ, ρ).

Let j be an index such that:

bx − tj < ρ and γx(tj) ∈ N̄q(w)

Let τ = tj and let y = γx(τ). Let δ be the mapping carrying (ax, τ + ρ) to
Rn, defined as follows:

δ(t) :=

{
γx(t) if ax < t < bx
γy(t− τ) if τ − ρ < t < τ + ρ

30



One can easily verify that δ is an integral curve for F passing through x at
time 0. However, bx < τ + ρ, in contradiction with the definition of γx. We
infer that our supposition is untenable. Therefore, if bx < ∞ then γx future
escapes to the boundary of V .

Of course, one may, in similar manner, formulate the concept of past escape to
the boundary of V and one may prove that if −∞ < ax then γx past escapes
to the boundary of V .

Convergence

We say that γx is future convergent iff there is a member y of V such that:

lim
t→bx

γx(t) = y

We refer to y as the future limit of γx. Let us assume that γx is future
convergent. We contend that bx =∞ and that F (y) = 0.

To prove the first contention, we simply note that:

M := γx([0, bx)) ∪ {y}

is a compact subset of V . Consequently, γx does not future escape to the
boundary of V . By the foregoing discussion, bx =∞.

In picturesque terms, one may say that if an integral curve future converges
to a member of V then it must take infinitely long to do so.

To prove the second contention, we argue by contradiction. Let us suppose
that F (y) �= 0. Let q = (1/2)|F (y)|. Let r be a positive number such that
N̄r(y) ⊆ V and such that, for each member z of N̄r(y), F (z) ∈ N̄q(F (y)). Let
τ be a number in Jx such that γx([ τ, bx)) ⊆ N̄r(y). We find that, for each
number t in (τ, bx):

1

t− τ (γx(t)− γx(τ)) =
1

t− τ

∫ t

τ

F (γx(u))du ∈ N̄q(F (y))

Hence:
(1/2)(t− τ)|F (y)| ≤ |γx(t)− γx(τ)|

It follows that γx([τ, bx)) is unbounded, in contradiction with our assumption
that γx is future convergent. We infer that our supposition is untenable.
Hence, F (y) = 0. Therefore, if γx is future convergent then bx = ∞ and
F (y) = 0, where y is the future limit of γx.
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Of course, one may, in similar manner, formulate the concept of past conver-
gence and one may prove that if γx is past convergent then ax = −∞ and
F (y) = 0, where y is the past limit of γx.

One refers to a member y of V for which F (y) = 0 as a critical point for F .

Predator/Prey

Let a, b, c, and d be positive numbers. Let F be the mapping carryingR+×R+

to R2, defined as follows:

F (x1, x2) = (cx1 − dx1x2, bx1x2 − ax2) (0 < x1, 0 < x2))

The ODE defined by F is the ODE of Lotka and Volterra:

(◦)
x◦1 = cx1 − dx1x2
x◦2 = bx1x2 − ax2

(0 < x1, 0 < x2)

It serves to model the population dynamics of Prey (x1) and Predator (x2).
Note that:

F (x1, x2) = (0, 0) iff x1 =
a

b
and x2 =

c

d

Let h be the function defined as follows:

h(x1, x2) := bx1 − a log(x1) + dx2 − c log(x2) (0 < x1, 0 < x2)

One can easily verify that:

(∇h)(x1, x2) • F (x1, x2) = 0 (0 < x1, 0 < x2)

Let γ be an integral curve for F:

γ(t) = (x1(t), x2(t)) (t ∈ J)

By the orthogonality relation just noted, it is plain that the function:

h(x1(t), x2(t)) (t ∈ J)

is constant. Consequently, γ(J) is a subset of one of the level sets for h.
For a sketch of the level sets for h, see the following figure. Obviously, the
population pair:

(w1, w2) = (
a

b
,
c

d
)

is critical. By interpreting the sketch, we find that, in general, the population
pairs (x1, x2) evolve cyclically, in counterclockwise direction.
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Chapter 3 COMPACT SPACES

Definitions

01◦ Let X be a metric space, with metric d. One says that X is compact
iff, for each sequence ξ in X , there is a subsequence ρ of ξ such that ρ is
convergent. This innocent condition proves to be the base for most of the
deeper results in the theory of metric spaces.

02◦ Clearly, the condition of compactness for a metric space X is specific not
to the given metric on X but to the topology on X . That is, for any metric
spaces X1 and X2, if X1 and X2 are homeomorphic then X1 is compact iff X2

is compact. More generally, let X1 and X2 be any metric spaces and let F be
a continuous surjective mapping carrying X1 to X2. Let us prove that if X1

is compact then X2 is compact. Thus, let ξ2 be any sequence in X2. Since
F is surjective, we may introduce a sequence ξ1 in X1 such that ξ2 = F · ξ1.
Since X1 is compact, we may in turn introduce a subsequence ρ1 of ξ1 which is
convergent. It follows that the subsequence ρ2 := F · ρ1 of ξ2 is convergent. �

03◦ Let us now develop several technically important conditions on metric
spaces, some of which imply the condition of compactness and some of which
are implied by it. For precise expression of these (and other) conditions, we
first introduce certain terminology. Thus, let X be a metric space and let Q
be a family of subsets of X . One says that Q is a covering of X iff X = ∪Q;
that Q is a partition of X iff Q is a covering of X and, for any Z ′ and Z ′′

in Q, if Z ′ �= Z ′′ then Z ′ ∩ Z ′′ = ∅. One says that Q is open iff, for each Z
in Q, Z is an open subset of X ; that Q is closed iff, for each Z in Q, Z is
a closed subset of X . Given a positive real number r, one says that Q is an
r-family iff, for each Z in Q, if Z �= ∅ then d(Z) ≤ r. Of course, it would be
meaningful to say that Q is an r-covering of X or that Q is an r-partition of
X .

04◦ Let Q1 and Q2 be families of subsets of X . One says that Q1 is a
refinement of Q2 iff, for each Z1 in Q1, there is some Z2 in Q2 such that
Z1 ⊆ Z2. To express this relation, one writes Q1 � Q2. When Q1 and Q2 are
coverings of X , one says that Q1 is a subcovering of Q2 iff Q1 ⊆ Q2.

05◦ Let X be a metric space. One says that X is totally bounded iff, for any
positive real number r, there is a finite r-partition Q of X . Obviously, if X is
totally bounded then X is bounded. Moreover, X is totally bounded iff, for
any positive real number r, there is a finite r-covering of X iff, for any positive
real number r, there is a finite subset A of X such that X = ∪y∈ANr(y).
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The Covering Theorem of Lebesgue

06◦ The following technical theorem sets a base for the study of compact
spaces.

Theorem 12 For any compact metric space X (with metric d) and for any
open covering Q of X , there is a positive real number r such that, for any
subset Y of X , if d(Y ) ≤ r then there is some Z in Q such that Y ⊆ Z.

Let us argue by contradiction. Thus, we may introduce a sequence Υ of
(nonempty) subsets of X such that, for each j in Z+, d(Υ(j)) ≤ 1/j and, for
each Z in Q, Υ(j) �⊆ Z. Let ξ be a sequence in X such that, for each j in Z+,
ξ(j) ∈ Υ(j). Since X is compact, we may introduce a convergent subsequence
ρ of ξ. Let ι be an index mapping (carrying Z+ to itself) such that ρ = ξ · ι
and let y := lim(ρ). Clearly, there must be some Z in Q such that y ∈ Z and
there must be some positive real number s such that Ns(y) ⊆ Z. Let k be a
positive integer such that 1/k < s/2 and such that ρ(k) ∈ Ns/2(y). Now, for
any z in Υ(ι(k)):

d(y, z) ≤ d(y, ρ(k)) + d(ξ(ι(k)), z) < (s/2) + (1/ι(k)) < s

It follows that Υ(ι(k)) ⊆ Z, contrary to the specification of Υ. •

07◦ One often refers to such a positive real number r as a lebesgue number
for the given open covering Q.

08◦ The foregoing theorem yields a sharp proof that every continuous map-
ping with compact domain is in fact uniformly continuous. Thus, let X1 and
X2 be any metric spaces (with metrics d1 and d2) and let F be a continuous
mapping carrying X1 to X2. Let us assume that X1 is compact. Let s be
any positive real number. For each x in X1, we may introduce a positive
real number r(x) such that F (Nr(x)(x)) ⊆ Ns/2(F (x)). Let Q be the open
covering of X1 consisting of all such neighborhoods Nr(x)(x) in X1, where x
runs through X1. Let r be a lebesgue number for Q. Clearly, for any y and
z in X1, if d1(y, z) < r then there is some x in X1 such that both y and z
are in Nr(x)(x). Hence, d2(F (y), F (z)) < s. It follows that F is uniformly
continuous. �

The Theorem of Bolzano and Weierstrass

09◦ The following two theorems present important reformulations of the con-
dition of compactness. The second is the Covering Theorem of Heine and
Borel. We shall refer to the first as the Theorem of Bolzano and Weierstrass.
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Theorem 13 For any metric spaceX ,X is compact iffX is totally bounded
and complete.

Let us assume that X is not complete. Thus, we may introduce a cauchy
sequence ξ in X which is not convergent. By our prior discussion of cauchy
sequences (in Chapter 2), it follows that ξ has no convergent subsequence.
Hence, X is not compact. Let us assume that X is not totally bounded.
We may introduce a positive real number r such that there are no finite r-
coverings of X . By induction, we may define a sequence ξ in X such that,
for any j and k in Z+, if j �= k then r/2 < d(ξ(j), ξ(k)). Clearly, ξ has no
convergent subsequence. Hence, X is not compact. It follows that if X is
compact then X is totally bounded and complete.

10◦ Now let us assume that X is totally bounded and complete. Let ξ be
any sequence in X . For each subset Y of X , let W (Y ) be the subset of Z+

consisting of all j such that ξ(j) ∈ Y . Let Ω be a sequence of coverings of X
such that, for each j in Z+, Ω(j) is a finite (1/j)-covering of X and such that,
for each j in Z+, Ω(j + 1) � Ω(j). By induction, we may define a sequence
Υ of subsets of X such that, for each j in Z+, Υ(j) ∈ Ω(j), Υ(j + 1) ⊆ Υ(j),
and W (Υ(j)) is infinite. Again by induction, we may define a subsequence ρ
of ξ such that, for each j in Z+, ρ(j) ∈ Υ(j). Clearly, ρ is a cauchy sequence,
hence convergent. Therefore, X is compact. •

The Covering Theorem of Heine and Borel

Theorem 14 For any metric space X , X is compact iff, for each open
covering Q of X , there is a finite subcovering P of Q.

Let us assume that X is not compact. Thus, we may introduce a sequence ξ in
X having no convergent subsequence. For any x in X and for any positive real
number r, let W (x, r) be the subset of Z+ consisting of all j such that ξ(j) ∈
Nr(x). Clearly, for each x in X , there must be some positive real number
r(x) such that W (x, r(x)) is finite. Otherwise, ξ would admit a subsequence
converging to x. The corresponding neighborhoods Nr(x)(x) (where x runs
through X) comprise an open covering Q of X . Since Z+ is infinite, there can
be no finite subcovering of Q. Now let us assume that X is compact. Let Q
be any open covering of X . By Theorem 12, there is a positive real number
r such that, for any r-covering P of X , P � Q. By Theorem 13, X is totally
bounded, so there is in fact a finite r-covering P of X . Obviously, there must
be a finite subcovering of Q. •
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11◦ Let us now consider the condition of compactness in relation to the var-
ious constructions of metric spaces discussed earlier.

12◦ Thus, for any metric space X and for any subspace Y of X , if Y is
compact then Y must be a closed subset of X . See Theorem 6. Moreover, if
X is compact then Y is compact iff Y is closed. With these remarks in mind,
one may apply Theorem 13 to prove that, for any subspace Y of the cartesian
space Rn, Y is compact iff Y is closed and bounded. One need only note
that every bounded subset of Rn is in fact totally bounded. This result is the
classical form of the Theorem of Bolzano and Weierstrass.

The Theorem of Tychonoff

13◦ The following theorem is one of the most widely applied in analysis.

Theorem 15 For any indexed family {Xa}a∈A of (nonempty) metric spaces
(where A is a countable set), the product

∏
a∈AXa of {Xa}a∈A is compact

iff, for each a in A, Xa is compact.

Let us introduce an indexed family {ca}a∈A of positive real numbers for which∑
a∈A ca <∞. Let δ be the corresponding metric on

∏
a∈AXa. Let us assume

that, for each a in A, Xa is compact. By Theorem 7,
∏

a∈AXa is complete.
By Theorem 13, to prove that

∏
a∈AXa is compact we need only prove that∏

a∈AXa is totally bounded. Thus, let r be any positive real number. Let
B be a finite subset of A such that

∑
A\B ca ≤ r/2. Let s be a positive real

number such that s
∑

a∈B ca ≤ r/2. For each a in B, let Qa be an s-covering

of Xa. Finally, let Q̂ be the family of subsets Ẑ of
∏

a∈AXa of the form:

Ẑ :=
∏
a∈A

Ya

where, for each a in A, if a ∈ B then Ya ∈ Qa while if a �∈ B then Ya = Xa.
One can easily check that, for any such Ẑ, δ(Ẑ) ≤ r. Clearly, Q̂ is a finite
r-covering of

∏
a∈AXa. Hence,

∏
a∈AXa is totally bounded. We conclude

that
∏

a∈AXa is compact. Now let us assume that
∏

a∈AXa is compact. For
each a in A, the projection mapping Pa carrying

∏
a∈AXa to Xa is surjective

and (uniformly) continuous. Hence, Pa is compact. •

14◦ In particular, for any metric space X and for any (nonempty) countable
set A, XA is compact iff X is compact.
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The Theorem of Ascoli and Arzelà

15◦ Let X1 and X2 be any metric spaces (with metrics d1 and d2), and let F
be any subset of C(X1, X2). One says that F is equicontinuous iff, for any x in
X1 and for any positive real number s, there is a positive real number r such
that, for any y in X1, if d1(x, y) < r then, for any F in F, d2(F (x), F (y)) < s.
By imitating the argument in article 8◦, one may prove that if X1 is compact
and if F is equicontinuous then F is in fact uniformly equicontinuous , in the
sense that, for any positive real number s, there is a positive real number
r such that, for any x and y in X1, if d1(x, y) < r then, for any F in F,
d2(F (x), F (y)) < s.

16◦ Of course, when X1 is compact, C(X1, X2) = C̄(X1, X2).

17◦ The following theorem provides a characterization of compact subsets of
certain metric spaces of continuous mappings.

Theorem 16 For any compact metric spacesX1 and X2 and for any subset
F of C(X1, X2), F is compact iff it is closed and equicontinuous.

We shall prove that F is totally bounded iff it is (uniformly) equicontinuous.
That will be sufficient. Let d1 and d2 be the given metrics on X1 and X2, and
let δ be the uniform metric on C(X1, X2). Let us assume that F is totally
bounded. We shall prove that F is (uniformly) equicontinuous. Let s be
any positive real number. We may introduce a finite subset G of F such that
F ⊆ ∪G∈GNs/3(G). Hence, for any F in F, we may introduce G(F ) in G such
that δ(G(F ), F ) < s/3. Since each G in G is uniformly continuous, there is
a positive real number r such that, for all x and y in X1, if d1(x, y) < r
then, for any G in G, d2(G(x), G(y)) < s/3. Hence, for all x and y in X1, if
d1(x, y) < r then, for any F in F:

d2(F (x), F (y))
≤ d2(F (x), G(F )(x)) + d2(G(F )(x), G(F )(y)) + d2(G(F )(y), F (y))
< s

It follows that F is (uniformly) equicontinuous. Now let us assume that F
is equicontinuous. We shall prove that F is totally bounded. Let s be any
positive real number. For any y in X1, we may introduce a positive real
number r(y) such that, for any x in X1, if d1(y, x) < r(y) then, for any F
in F, d2(F (y), F (x)) < s/4. By Theorem 14, there is a finite subset A of X1

such that X1 = ∪y∈ANr(y)(y). By Theorem 13, there is a finite subset B of
X2 such that X2 = ∪z∈BNs/4(z). Let E be the (finite) set of all mappings
E carrying A to B. We may introduce a mapping Γ carrying F to E such
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that, for any F in F and for any y in A, F (y) ∈ Ns/4(Γ(F )(y)). Let F and
G be any members of F for which Γ(F ) = Γ(G). For any x in X1, we may
introduce y in A such that x ∈ Nr(y)(y). Clearly:

d2(F (x), G(x))
≤ d2(F (x), F (y)) + d2(F (y),Γ(F )(y)) + d2(Γ(G)(y), G(y)) + d2(G(y), G(x))
< s

Hence, δ(F,G) ≤ s. It follows that {Γ−1(E)}E∈E is a a finite s-covering of
F. •

The Selection Theorem of Blaschke

18◦ Now let X be any metric space. Let K(X) be the family of all nonempty
compact subsets of X . Of course, we may view K(X) as a subspace of H(X),
with the hausdorff metric δ. In general, K(X) need not be a closed subset of
H(X) but if X is complete then it must be so. By Theorems 6 and 9, it would
follow that K(X) is complete. Thus, let X be complete. Let Υ be a sequence
in K(X) and let Y be a member of H(X). Let us assume that Υ → Y . We
shall prove that Y is compact. Since Y is (closed and hence) complete, we
need only prove that Y is totally bounded. To that end, let r be any positive
real number. Let us introduce j in Z+ such that Y ⊆ Nr/3(Υ(j)). Let Qj

be a finite (r/3)-covering of Υ(j). Let Q be the family of subsets Z of Y of
the form Z := Y ∩Nr/3(V ), where V runs through Qj . Clearly, Q is a finite
r-covering of Y . �

19◦ In many cases, K(X) and H(X) coincide, for example, when X is com-
pact or when X is a cartesian space. In general, however, one should expect
K(X) to be a small subset of H(X).

20◦ The following theorem of Blaschke refines our picture of H(X).

Theorem 17 For any compact metric space X , H(X) is compact.

We shall actually prove that if X is totally bounded then H(X) is totally
bounded. By Theorem 13, that will be sufficient. Thus, let r be any positive
real number; let s be a positive real number for which s < r/2. Let Q be a
finite s-covering of X . We may presume that, for each Z in Q, Z is closed and
Z �= ∅. For each Y in H(X), let P be the (nonempty) subset of Q consisting
of all Z such that Y ∩ Z �= ∅. Clearly, Y ⊆ ∪P and ∪P ⊆ Nr/2(Y ). Hence,
Y is contained in the neighborhood Nr/2(∪P) in H(X). Let Q∗ be the family
of all neighborhoods in H(X) of the form Nr/2(∪P), where P runs through
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all nonempty subsets of Q. By the foregoing observations, we conclude that
Q∗ is a finite r-covering of H(X). •

The Theorem of Stone

21◦ Let us conclude this section by presenting the celebrated Theorem of
Stone. The following terminology will enable a graceful formulation of the
theorem. Thus, let X be any metric space. The linear space C̄(X) (consist-
ing of all bounded continuous functions defined on X with values in C) is
a commutative algebra (over C). Let C̄(X) be supplied as usual with the
uniform metric. One says that a subfamily A of C̄(X) is involutory iff, for
any f in A, f∗ is in A. One says that A separates points in X iff, for any x
and y in X , if x �= y then there is some f in A such that f(x) �= f(y). Of
course, by a subalgebra of C̄(X), one means any linear subspace A of C̄(X)
such that 1X (the function with constant value 1) is in A and such that, for
any f and g in A, fg is in A.

22◦ One may illustrate such terms by recalling the classical context, in which
X is a bounded subspace of Rn and A consists of all polynomial functions
(restricted to X).

23◦ For the record, let us note that if X is compact then C̄(X) = C(X).

Theorem 18 For any compact metric space X and for any involutory sub-
algebra A of C(X), if A separates points in X then A is dense in C(X).

Obviously, B := clo(A) is a closed involutory subalgebra of C(X) which
separates points in X . We shall prove that B = C(X). Let R(X) be the
subfamily of C(X) consisting of all continuous functions defined on X with
values in R. Clearly, for each f in C(X), f = Re(f) + i.Im(f), where of
course Re(f) := (1/2).(f + f∗) and Im(f) := (1/2i).(f − f∗). Obviously,
Re(f) and Im(f) are in R(X). We infer that R(X) ∩B separates points in
X , and that B = C(X) iff R(X) ⊆ B.

24◦ At this point, we assert that:

(σ) if f ∈ B then |f | ∈ B (f ∈ C(X))

Let us assume for the moment that condition (σ) is satisfied. It follows that,
for any g and h in R(X)∩B, g ∨ h and g ∧ h are also in R(X)∩B, because:

g ∨ h = (1/2)(g + h+ |g − h|)
g ∧ h = (1/2)(g + h− |g − h|)
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Now let f be any member of R(X). Let r be any positive real number. Let
x be any member of X . For each y in X , we may apply the condition that
R(X)∩B separates points in X to design a member gy of R(X)∩B such that
gy(x) = f(x) and gy(y) = f(y). Let Vy be the (open) subset of X consisting of
all z such that gy(z) < f(z) + r. Obviously, y ∈ Vy. By Theorem 14, we may
introduce a finite subset B of X such that X = ∪y∈BVy. Let hx := ∧y∈B gy.
Clearly, hx ∈ R(X) ∩ B and, for all z in X , hx(z) < f(z) + r. Moreover,
hx(x) = f(x). Let Ux be the (open) subset of X consisting of all z such that
f(z) − r < hx(z). Obviously, x ∈ Ux. By Theorem 14, we may introduce
a finite subset A of X such that X = ∪x∈AUx. Let h := ∨x∈A hx. Clearly,
h ∈ R(X)∩B and, for all z in X , f(z)− r < h(z) < f(z) + r. It follows that
f ∈ clo(B) = B. We infer that R(X) ⊆ B.

25◦ Finally, let us prove that B satisfies condition (σ). Let f be any member
of B. Since |f |2 = f.f∗, |f |2 ∈ B. Let s be any positive real number. Let c
be the maximum value of s.1X + |f |2. Let q be the function in C([ s, c ]) such
that, for any t in [ s, c ], q(t) :=

√
t. Applying the classical Theorem of Taylor,

we may introduce a sequence π of polynomial functions in C([ s, c ]) such that
π → q. It follows that: √

s.1X + |f |2 ∈ B

We infer that |f | ∈ B. •
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Problems

The Theorem of Lindelöf

01• Let X be a separable metric space. Prove that, for any open covering Q
of X , there is a countable subcovering P of Q.

02• Let X be a metric space. Prove that if X is totally bounded then X is
separable.

03• Let X be a metric space (with metric d). Let Y ′ and Y ′′ be nonempty
subsets of X such that Y ′ is closed, Y ′′ is compact, and Y ′ ∩ Y ′′ = ∅. Prove
that 0 < d(Y ′, Y ′′).

04• Let X be any set and let D be a family of subsets of X . One says that D
is upward directed iff, for any Y ′ and Y ′′ in D, there is some Z in D such that
Y ′ ⊆ Z and Y ′′ ⊆ Z; downward directed iff, for any Y ′ and Y ′′ in D, there is
some Z in D such that Z ⊆ Y ′ and Z ⊆ Y ′′. Now let X be a compact metric
space. Prove that if D is open and upward directed then ∪D = X iff there
is some Y in D such that Y = X . Prove that if D is closed and downward
directed then ∩D = ∅ iff there is some Y in D such that Y = ∅.

05• Let X1 and X2 be metric spaces and let H be a continuous mapping
carrying X1 to X2. Prove that if X1 is compact and H is bijective then H is
a homeomorphism.

Compactifications

06• Let X be a separable metric space. Let V be a countable base for X .
Let H be the mapping carrying X to [ 0, 1 ]V , defined as follows:

H(x)(V ) := d̄X\V (x) (x ∈ X, V ∈ V)

Let X := H(X) and Ξ := clo(H(X)) be the corresponding subspaces of
[ 0, 1 ]V . Note that X is compact, X is dense in Ξ, and X is totally bounded.
Prove that H carries X homeomorphically to X . In such a context, one refers
to Ξ as a compactification of X . Such a compactification is unique, in the
following sense. Let Ξ1 and Ξ2 be compact metric spaces. Let X1 be a dense
subspace of Ξ1. Prove that, for any uniformly continuous mapping F carrying
X1 to Ξ2, there is precisely one uniformly continuous mapping Φ carrying Ξ1

to Ξ2 such that, for each x in X1, Φ(x) = F (x). Prove that if X2 := F (X1) is
dense in Ξ2 and if F is a uniform homeomorphism (carrying X1 to X2) then
Φ is a uniform homeomorphism.
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07• Let X1 and X2 be metric spaces. Prove that if X1 is compact and X2

is separable then the metric space C(X1, X2) (with the uniform metric) is
separable.

08• Let X be a separable metric space. Prove that K(X) must be separable.
[ Given a subset Z ofX , let Z be the subset ofK(X) consisting of all nonempty
finite subsets of Z. Prove that if Z is countable and dense in X then Z is
(countable and) dense in K(X). ] Show by example that H(X) need not be
separable.

Cantor Spaces

09• By a cantor metric space one means any metric space X which is com-
pact, totally disconnected, and perfect. Prove that {0, 1}Z+

is a cantor metric
space. Let c be any real number for which 0 < c < 1/2 and let H be the

mapping carrying {0, 1}Z+

to [ 0, 1 ] defined as follows:

H(x̂) :=

∞∑
j=1

x̂(j)(1 − c)cj−1 (x̂ ∈ {0, 1}Z+

)

Prove that H is injective and continuous. Conclude that Zc := H({0, 1}Z+

)

is a (compact) subspace of [ 0, 1 ] homeomorphic to {0, 1}Z+

, hence that Zc is
cantor. One refers to Zc as the cantor subspace of [ 0, 1 ] defined by c. Show
that, when c = 1/3, Zc coincides with the classical cantor set.

10• Let X1 and X2 be (nonempty) metric spaces. Prove that if X1 is cantor
and if X2 is compact then there is a continuous surjective mapping H car-
rying X1 to X2. Prove that if both X1 and X2 are cantor then there is a
homeomorphism H carrying X1 to X2. [ For the first assertion, introduce any
sequence ρ in R+ such that ρ → 0. Then design a sequence Υ2 of families of
subsets of X2 such that, for each j in Z+, Υ2(j) is a finite closed ρ(j)-covering
of X2 and such that, for each j in Z+, Υ2(j + 1) is a refinement of Υ2(j).
Arrange that, for each j in Z+ and for any Y in Υ2(j), (∪Υ2(j))\Y �= X2. In
turn, design a sequence Υ1 of families of subsets of X1 and a sequence φ of
mappings such that, for each j in Z+, Υ1(j) is a finite clopen ρ(j)-partition
of X1; such that, for each j in Z+, Υ1(j + 1) is a refinement of Υ1(j); such
that, for each j in Z+, φ(j) is a surjective mapping carrying Υ1(j) to Υ2(j);
and such that, for each j in Z+ and for any Y ′ in Υ1(j) and Y

′′ in Υ1(j +1),
if Y ′′ ⊆ Y ′ then φ(j + 1)(Y ′′) ⊆ φ(j)(Y ′). Now show that there is a mapping
H carrying X1 to X2 defined by the condition that, for any x1 in X1 and for
any x2 in X2, H(x1) = x2 iff, for each j in Z+ and for any Y in Υ1(j), if
x1 ∈ Y then x2 ∈ φ(j)(Y ). Check that H is surjective and continuous. For
the second assertion, one may arrange that, for each j in Z+, Υ2(j) is a (finite)
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clopen ρ(j)-partition of X2 and that, for each j in Z+, φ(j) is bijective. It
follows easily that H is a homeomorphism. All the foregoing maneuvers would
be facilitated by noting ab initio that, for any cantor space X and for any
positive real number r, there is a positive integer k such that, for any positive
integer j, if k ≤ j then there is a finite clopen r-partition of X containing j
(nonempty) members. ]

An Application of the Theorem of Stone

11• Let r be any positive real number. Let D be the (compact) disk in
C consisting of all complex numbers ζ such that |ζ| ≤ r. Let Z ′ be the
subalgebra of C(D) consisting of all mappings of the form:

f(ζ) :=

n∑
j=0

αjζ
j (ζ ∈ D)

where n is any nonnegative integer and where the various αj are any complex
numbers. Let Z ′′ be the subalgebra of C(D) consisting of all mappings of the
form:

g(ζ) :=

n∑
j=0

n∑
k=0

βjkζ
jζ∗k (ζ ∈ D)

where n is any nonnegative integer and where the various βjk are any complex
numbers. Note that both Z ′ and Z ′′ separate points in D. Note that Z ′′ is
involutory while Z ′ is not. Prove that Z ′′ is dense in C(D) while Z ′ is not.

Hausdorff Dimension

12• Let X be any separable metric space. By the following maneuvers, we
proceed to define the hausdorff dimension δH(X) of X . Let r and s be any
positive real numbers. Let:

δsr(X) := inf
V

∑
V ∈V

d(V )s

where V runs through all the various countable r−coverings of X . Obviously,
0 ≤ δsr(X) ≤ ∞. Moreover, for any positive numbers r′, r′′, and s, if r′ < r′′

then δsr′′(X) ≤ δsr′(X). Hence, for any positive number s, we may introduce
the following limit:

δs(X) := lim
r→0

δsr(X)

Show that, for any positive numbers s′ and s′′, if s′ < s′′ and if δs
′
(X) < ∞

then δs
′′
(X) = 0. This remarkable (and fundamental) fact entails that there

are just three possibilities:
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(•) for every positive number s′′, δs
′′
(X) = 0;

(•) there is a particular positive number s such that, for any positive
numbers s′ and s′′, if s′ < s then δs

′
(X) =∞ and if s < s′′ then δs

′′
(X) = 0;

(•) for every positive number s′, δs
′
(X) =∞.

In the first case, one defines δH(X) to be 0; in the second case, s; and in the
third case, ∞. In general:

δH(X) := inf { s : 0 < s, δs(X) = 0 }

Let Y be any countable family of subspaces of X . Show that:

sup
Y ∈Y

δH(Y ) = δH(
⋃
Y ∈Y

Y )

[ Obviously, supY ∈Y δH(Y ) ≤ δH(∪Y ∈YY ). Let s be any positive number for
which supY ∈Y δH(Y ) < s. Hence, for any Y in Y, δs(Y ) = 0. It follows
that δs(∪Y ∈YY ) = 0. Hence, δH(∪Y ∈YY ) ≤ s. Therefore, δH(∪Y ∈YY ) ≤
supY ∈Y δH(Y ). ] Let X ′ and X ′′ be any separable metric spaces (with metrics
d′ and d′′, respectively) and let H be a surjective lipschitz continuous mapping
carrying X ′ to X ′′. Show that:

δH(X ′′) ≤ δH(X ′)

[ Let c be the lipschitz constant for H . Let r and s be any positive numbers.
Clearly, for any (nonempty) subset V of X ′, d(H(V ))′′ ≤ cd(V )′. It follows
that, for any r-covering V of X ′, H(V) is a cr-covering of X ′′. In turn, it
follows that δscr(X

′′) ≤ csδsr(X
′). Hence, δs(X ′′) ≤ csδs(X ′). Therefore,

δH(X ′′) ≤ δH(X ′). ]

Kolmogoroff (Box) Dimension

13• Let X be any compact metric space, with metric d. In particular, X
might be a closed bounded subset of a cartesian space Rn. By the following
maneuvers, we proceed to define the kolmogoroff dimension δK(X) of X . Let
r be any positive real number. Let A be any subset of X . One says that A is
r−spanning iff, for each x in X , there is some a in A such that d(x, a) < r.
One says that A is r−separated iff, for any a′ and a′′ in A, if a′ �= a′′ then
r ≤ d(a′, a′′). Since X is compact, one can show that if A is r−separated
then A must be finite. Moreover, one can show that there must exist a finite
r−spanning subset A of X . Let ρ(r) stand for the smallest positive integer
j for which there exists an r−spanning subset A of X having j members. In
turn, let σ(r) stand for the largest positive integer j for which there exists an
r−separated subset A of X having j members. Show that:

ρ(r) ≤ σ(r) ≤ ρ(r
2
) (0 < r)
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[ Let A be an r−separated subset of X containing σ(r) members. Clearly, A
must be r−spanning. Hence, ρ(r) ≤ σ(r). Now let B any (r/2)−spanning
subset of X . If B contains fewer members than A then there are two distinct
members a′ and a′′ of A and a member b of B such that d(a′, b) < r/2
and d(a′′, b) < r/2, contradicting the fact that A is r−separated. Hence,
σ(r) ≤ ρ(r/2). ] The foregoing relation makes it plain that:

lim inf
r→0

log(ρ(r))

log(1r )
= lim inf

r→0

log(σ(r))

log(1r )

One defines δK(X) to be the common value of the foregoing limits. Now let:

x1, x2, x3, · · · , xj , · · ·

be a sequence in X which is dense in X . Show that one may compute δK(X)
by reference to the given sequence alone. [ Let r be any positive real number.
Let Q(r) be the subset of Z+, defined inductively as follows:

1 ∈ Q(r)

(∀j) [ j ∈ Q(r) iff (∀i)(if 1 ≤ i < j and i ∈ Q(r) then r ≤ d(xi, xj)) ]

Let q(r) be the number of members of Q(r). Let A be the subset of X
consisting of all terms xj of the given sequence for which j ∈ Q(r). Clearly, A
is r−separated. Hence, q(r) ≤ σ(r). Moreover, for any x in X , there is some
i in N for which d(x, xi) < r/2. In turn, there is some j in Q(r/2) such that
d(xi, xj) < r/2. Obviously, d(x, xj) < r. It follows that A is r−spanning.
Hence, ρ(r) ≤ q(r/2).In summary:

ρ(2r) ≤ q(r) ≤ σ(r) (0 < r)

The foregoing relation makes it plain that:

δK(X) = lim inf
r→0

log(q(r))

log(1r )

Of course, the indicated limit is determined by the given sequence alone. ]
Prove that, for any compact metric space X :

δH(X) ≤ δK(X)

[ Let t and s be any positive numbers for which δK(X) < t < s. By definition,
there must exist arbitrarily small positive numbers r such that log(ρ(r)) <
t log(1/r). Let A be an r−spanning subset of X containing ρ(r) members.
Let V be the family consisting of the various open balls of radius r centered
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at the various points in A. Clearly, V is a 2r−covering of X . Hence, δs2r(X) ≤
r−t(2r)s = 2srs−t. It follows that δs(X) = 0. Therefore, δH(X) ≤ δK(X). ]

Topological Dimension (A Summary)

14• Let X be any separable metric space. By the following maneuvers, we
proceed to define the topological dimension δT (X) of X . Let V be a finite open
covering of X . By the order of V , one means the greatest nonnegative integer
j for which there exists a subfamily U of V such that U contains j members
and ∩V ∈UV �= ∅. One denotes the order of V by o(V). Given (finite) open
coverings V ′ and V ′′ of X , one says that V ′′ is a refinement of V ′ iff, for any
set V ′′ in V ′′, there is a set V ′ in V ′ such that V ′′ ⊆ V ′. One expresses this
relation by writing V ′ � V ′′. Now let n be any integer for which −1 ≤ n. One
writes δT (X) ≤ n to say that, for any (finite) open covering V ′ of X , there is
a (finite) open covering V ′′ of X such that V ′ � V ′′ and o(V ′′) ≤ n+ 1. One
defines δT (X) to be the smallest integer n (−1 ≤ n) for which δT (X) ≤ n.
If no such integer exists then one takes δT (X) to be ∞. Obviously, δT (X)
derives not from the specific metric with which X is supplied but from the
topology defined by that metric. It follows that, for any separable metric
spaces X ′ and X ′′, if X ′ and X ′′ are homeomorphic then δT (X

′) = δT (X
′′).

One can show that, for any countable family Y of closed subsets of X :

sup
Y ∈Y

δT (Y ) = δT (
⋃
Y ∈Y

Y )

One can also show that, for any separable metric space X :

δT (X) ≤ δH(X)

In fact, δT (X) is the infimum of the various values δH(X) which arise as the
metric d on X varies over all metrics compatible with the given topology.
The proofs are difficult. One can design separable metric spaces X for which
δT (X) = 0 while δH(X) =∞. However, for any reasonable space X (such as
a polyhedron), all three of the foregoing dimension functions yield the same
value.

See Hurewicz and Wallman: Dimension Theory, 1948.

Fractals

15• Let X be a complete metric space, with metric d. Let K(X) be the family
of all nonempty compact subsets of X . Supplied with the hausdorff metric,
K(X) is a complete metric space. See article 18◦. Let A be any (nonempty)
finite set. For each a in A, let Fa be a contraction mapping carrying X to
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itself. Let ca be the contraction constant for Fa. Finally, let F be the mapping
carrying K(X) to itself, defined as follows:

F(Y ) =
⋃
a∈A

Fa(Y ) (Y ∈ K(X))

Prove that F is a contraction mapping. That done, apply the Contraction
Mapping Theorem to obtain the unique set Z in K(X) for which:

Z =
⋃
a∈A

Fa(Z)

One refers to Z as the fractal defined by the family:

Fa (a ∈ A)

of contraction mappings carrying X to itself. The cases in which δH(Z) is
fractional, that is, for which:

δH(Z) /∈ Z

are the cases of special interest.

The Cantor Set

16• Let F1 and F2 be the contraction mappings carrying R to itself, defined
as follows:

F1(x) =
1

3
x

F2(x) =
1

3
x+

2

3

(x ∈ R)

Describe the corresponding fractal Z. Show that δH(Z) = log(2)/log(3).

The Koch Set

17• Let θ = π/3. Let F1, F2, F3, and F4 be the contraction mappings
carrying C ≡ R2 to itself, defined as follows:

F1(z) =
1

3
z

F2(z) =
1

3
e+iθz + F1(1)

F3(z) =
1

3
e−iθz + F2(1)

F4(z) =
1

3
z +

2

3

(z ∈ C)

Describe the corresponding fractal Z. Show that δH(Z) = log(4)/log(3).
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