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1 Random Processes

1◦ Let (Ω,F , P ) be a probability space. By definition, Ω is a set, F is a
σ-algebra of subsets of Ω, and P is a normalized finite nonnegative measure
on F . Let L2(Ω) be the real hilbert space comprised of the square integrable
real-valued measurable functions defined on Ω. We will employ the following
notations:

(1) [F,G] :=
∫

Ω

F (ω)G(ω)P (dω) (F ∈ L2(Ω), G ∈ L2(Ω))

and:

(2) [H, 1] =
∫

Ω

H(ω)P (dω) (H ∈ L2(Ω))

For any functions F and G in L2(Ω), one regards F and G as indistinguishable
iff:

(3) [F −G,F −G] = 0

2◦ Let J be the interval in R comprised of the nonnegative real numbers.
Let λ be lebesgue measure on the σ-algebra of borel subsets of J . By a real-
valued random process on J , one means a measurable mapping X carrying the
product space J ×Ω to R. For such a mapping, we will employ the following
notation:

(4) X(s)(ω) = Xs(ω) = X(s, ω) = Xω(s) = X(ω)(s) (s ∈ J, ω ∈ Ω)

We will require that:

(5) Xs ∈ L2(Ω) (0 ≤ s)
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In effect, then, one may regard the random process X as a mapping carrying
J to L2(Ω):

J
X−→ L2(Ω)

jointly measurable in s and ω. One says that X is continuous in the mean
iff, as a mapping carrying J to L2(Ω), X is continuous. One says that X has
continuous trajectories iff, for each ω in Ω, Xω is continuous (as a real-valued
function defined on J). In this case, one may regard X as a mapping carrying
Ω to C(J):

Ω X−→ C(J)

jointly measurable in s and ω. By C(J), one denotes the set comprised of all
continuous real-valued functions defined on J .

3◦ Let B be a real-valued random process on J which defines a Brownian
motion, with start state 0:

(6) B0 = 0

The various basic properties of B will emerge in due course. For each r in J ,
let Er be the σ-subalgebra of F comprised of all sets of the form:

B−1
r (A)

where A is any borel subset of R. However, with regard to our subsequent
description of the Ito Integral, let us take E0 to be the σ-subalgebra of F
comprised of all sets N in F for which either P (N) = 0 or P (N) = 1. In
turn, let Fs be the σ-subalgebra of F generated by the union of the various
σ-subalgebras Er, where 0 ≤ r ≤ s:

(7) Fs :=
⋃

0≤r≤s

Er (0 ≤ s)

Clearly:

(8) Fs ⊆ Ft (0 ≤ s < t)

We will assume that the σ-subalgebra of F generated by the union of the
various σ-subalgebras Fs is F itself:

(9) F =
⋃
0≤s

Fs

We obtain a filtration of F :

(10) Fs ↑ F
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It may happen that:

(11) Ft =
⋃

0≤s<t

Fs (0 < t)

or that:

(12) Fs =
⋂
s<t

Ft (0 ≤ s)

In the former case, one says that the filtration of F is left continuous; in the
latter case, right continuous. In general, neither condition holds. However,
Brownian motion has continuous trajectories, so both conditions hold.

4◦ For each s in J , let L2
s(Ω) be the closed linear subspace of L2(Ω) com-

prised of all functions in L2(Ω) which are measurable with respect to Fs.
Clearly:

(13) L2
s(Ω) ⊆ L2

t (Ω) (0 ≤ s < t)

Relation (9) entails that the closure of (the linear span of) the union of the
various closed linear subspaces L2

s(Ω) is L2(Ω) itself. We obtain a filtration
of L2(Ω):

(14) L2
s(Ω) ↑ L2(Ω)

5◦ For each s in J , let Πs be the orthogonal projection operator carrying
L2(Ω) to L2

s(Ω). For each function H in L2(Ω), Πs(H) is the conditional
expectation of H with respect to Fs:

∫
A

Πs(H)(ω)P (dω) = [Πs(H), 1A]

= [H,Πs(1A)]
= [H, 1A]

=
∫

A

H(ω)P (dω)

(A ∈ Fs)

6◦ One refers to a random process X as a martingale with respect to the
given filtration of F iff:

(15) Πr(Xs) = Xr (0 ≤ r < s)
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It follows that:

(16) [Xs, 1] = [X0, 1] (s ∈ J)

so one may say that the martingale X has mean m := [X0, 1]. Moreover:

(17) (Xs −Xr) ⊥ L2
r(Ω) (0 ≤ r < s)

7◦ By definition, B is a martingale (having mean 0) with respect to the
given filtration of F , so:

(18) Πr(Bs) = Br (0 ≤ r < s)

and:

(19) (Bs −Br) ⊥ L2
r(Ω) (0 ≤ r < s)

By definition:

(20) [Bs −Br, Bs −Br] = (s− r) (0 ≤ r < s)

This relation entails that B is (uniformly) continuous in the mean. Moreover:

(21)

[H(Bs −Br), H(Bs −Br)]

= [H2(Bs −Br)2, 1]

= [H2, 1][(Bs −Br)2, 1]
= [H,H](s− r)

(0 ≤ r < s, H ∈ L∞
r (Ω))

because, by definition, H2 and (Bs − Br)2 are independent. By L∞
r (Ω), one

denotes the real algebra of real-valued functions H defined on Ω, measurable
with respect to Fr, and bounded (modulo P ).

2 The Ito Integral

8◦ Let t′ and t′′ be any real numbers for which 0 ≤ t′ < t′′. Let Σ := [ t′, t′′ ].
Let WΣ be the real linear space comprised of all measurable mappings X
carrying the product space Σ × Ω to R, which meet the requirements that:

(22) Xs ∈ L2
s(Ω) (t′ ≤ s ≤ t′′)

and:

(23)
∫

Σ

[Xs, Xs]λ(ds) <∞
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Let WΣ be supplied with the following inner product:

(24) [X,Y ]Σ :=
∫

Σ

[Xs, Ys]λ(ds) (X ∈ WΣ, Y ∈ WΣ)

For any mappings X and Y in WΣ, one regards X and Y as indistinguishable
iff:

(25) [X − Y,X − Y ]Σ = 0

By applying Fubini’s Theorem, one can readily show that X and Y are in-
distinguishable iff there exists a set N in Ft′′ such that P (N) = 0 and such
that, for each ω in Ω\N , there is a borel subsetMω of Σ such that λ(Mω) = 0
and, for each t in Σ\Mω, Xω(t) = Yω(t). Now one may define the real linear
mapping IΣ carrying WΣ to L2

t′′(Ω) as follows. For mappings in WΣ of the
form:

(26) H1[r,s) (t′ ≤ r < s ≤ t′′, H ∈ L∞
r (Ω))

one defines:

(27) IΣ(H1[r,s)) := H(Bs −Br)

One applies relation (21) to show that, on the linear span W0
Σ of mappings of

the foregoing form, IΣ preserves inner products; and one applies elementary
arguments to show that W0

Σ is dense in WΣ. One completes the definition
of IΣ by passing to limit in the mean, obtaining the following fundamental
relation:

(28) [IΣ(X), IΣ(Y )] = [X,Y ]Σ (X ∈ WΣ, Y ∈ WΣ)

One refers to this relation as Ito’s Relation of Isometry. It entails that IΣ is
injective modulo the relation of indistinguishability on WΣ.

9◦ We will employ the following notation for the Ito Integral:

(29) IΣ(X)(ω) =
∫

Σ

X(s, ω)B(ds, ω) (X ∈ WΣ)

where:
Σ := [ t′, t′′ ]

10◦ Now let W be the real linear space comprised of all real-valued random
processes X on J which meet the requirements:

(30) Xs ∈ L2
s(Ω) (0 ≤ s)
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and:

(31)
∫

[0,t ]

[Xs, Xs]λ(ds) <∞ (0 ≤ t)

Let W be supplied with the following (pseudo -) inner products:

(32) [X,Y ]t :=
∫

[0,t ]

[Xs, Ys]λ(ds) (0 ≤ t, X ∈ W, Y ∈ W)

For any random processes X and Y in W, one regards X and Y as indistin-
guishable iff:

(33) [X − Y,X − Y ]t = 0 (0 ≤ t)

By applying Fubini’s Theorem, one can readily show that X and Y are indis-
tinguishable iff there exists a set N in F such that P (N) = 0 and such that,
for each ω in Ω\N , there is a borel subset Mω of J such that λ(Mω) = 0 and,
for each t in J\Mω, Xω(t) = Yω(t).

11◦ Assembling the foregoing terms, we may describe the Ito Integral I
as the linear mapping carrying W to W, defined and uniquely characterized
by the conditions that:

(34) I(H 1[r,s))t :=




0 if 0 ≤ t < r
H (Bt −Br) if r ≤ t < s
H (Bs −Br) if s ≤ t

(0 ≤ r < s, H ∈ L∞
r (Ω))

and:

(35) [I(X)t, I(Y )t] = [X,Y ]t (0 ≤ t, X ∈ W, Y ∈ W)

One presumes to define the Ito Integral I as follows:

(36) I(X)t := It(X ↓ Wt) (0 ≤ t, X ∈ W))

where:

(37) Wt := W[0,t ] and It := I[0,t ]

Clearly, I(X) is a mapping carrying J×Ω to R and it meets requirements (30)
and (31). However, it may not be jointly measurable in t and ω. Nevertheless,
one can show that I(X) is a martingale (the definition of which does not
require that I(X) be jointly measurable in t and ω). One may then apply
Doob’s Theorem to “adjust” I(X) so that it has continuous trajectories. For
each t in J , the old I(X)t and the new I(X)t are indistinguishable in L2(Ω).
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At this point, one should recall our specification of E0. (See Article 3◦.) By
this specification, it is plain that the new I(X)t must lie in L2

t (Ω).

12◦ One can readily show that, for any mapping X carrying J × Ω to R, if,
for each t in J , Xt is measurable in ω, and if, for each ω in Ω, Xω is continuous
in t, then X is jointly measurable in t and ω. It follows that the new I(X) is
jointly measurable in t and ω.

13◦ In this context, one should note that, for any random processes X and
Y in W, if X and Y have continuous trajectories then X and Y are indistin-
guishable iff there exists a set N in F such that P (N) = 0 and such that, for
each ω in Ω\N , Xω = Yω. Hence, modulo P , one can specify I(X) precisely
as a mapping carrying J × Ω to R.

14◦ The range of I proves to be the real linear subspace of W comprised of all
martingales which have mean 0. This result is the Martingale Representation
Theorem.

15◦ We will employ the following notation:

(38) It(X)(ω) =
∫

[0,t ]

X(s, ω)B(ds, ω) (0 ≤ t, X ∈ W)

The range of It proves to be the closed linear subspace of L2
t (Ω) comprised

of the functions H for which [H, 1] = 0. One refers to this fact as Ito’s
Representation Theorem.

3 Ito Processes

16◦ Let U and V be any random processes in W. Let X0 be any function in
L2

0(Ω). Such a function must in fact be constant modulo P . In terms of U ,
V , and X0, one defines the random process X in W as follows:

(39) X(t, ω) := X0(ω) +
∫

[0,t ]

U(s, ω)ds+
∫

[0,t ]

V (s, ω)B(ds, ω)

where (t, ω) is any ordered pair in J×Ω. In the foregoing relation, the second
integral is Ito’s integral It. Of course, one must verify that the first integral
defines a random process in W. One refers to X as the Ito Process defined
by U , V , and X0.

17◦ For clarity, let us note that relation (39) (and all such relations to follow)
must be interpreted modulo λ×P . However, for each ω in Ω, the first integral
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in relation (39) is necessarily continous in t. By design of the Ito Integral,
the second integral is also continuous in t. Hence, one may (implicitly) aug-
ment relation (39) by requiring that the random process X have continuous
trajectories. Therefore, modulo P , one can specify X precisely as a mapping
carrying J × Ω to R. (See Article 13◦.)

18◦ Now let M be the family comprised of all real-valued functions L defined
and continuous on J × R, which meet the requirement that, for each τ in J ,
there is a nonnegative real number β such that:

(40) |L(t, x) − L(t, y)| ≤ β|x− y| (0 ≤ t ≤ τ, x ∈ R, y ∈ R)

It follows that:

(41) |L(t, x| ≤ γ(1 + |x|) (0 ≤ t ≤ τ, x ∈ R)

where:
γ := β ∨ sup

0≤t≤τ
|L(t, 0)|

Let L be any function in M. For any random process X in W, one may form
the mapping X̄ carrying J × Ω to R as follows:

(42) X̄(t, ω) := L(t,X(t, ω)) ((t, ω) ∈ J × Ω)

One can readily show that X̄ is a random process in W. To this end, one
needs only requirement (41).

4 Stochastic Differential Equations

19◦ LetX0 be any function in L2
0(Ω) and letK and L be real-valued functions

in M. For each random process X in W, we may form the random process
Y in W as follows:

(43) Y (t, ω) := X0(ω) +
∫

[0,t ]

K(s,X(s, ω))ds+
∫

[0,t ]

L(s,X(s, ω))B(ds, ω)

where (t, ω) is any ordered pair in J × Ω. In this way, we obtain a mapping
T carrying W to itself:

T(X) := Y (X ∈ W)

We plan to show that (in a certain sense) T is a contraction mapping on W
and that, as a result, it admits a unique fixed “point” Z:

(44) Z(t, ω) := X0(ω) +
∫

[0,t ]

K(s, Z(s, ω))ds+
∫

[0,t ]

L(s, Z(s, ω))B(ds, ω)
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where (t, ω) is any ordered pair in J ×Ω. One interprets this random process
Z as the solution of the stochastic differential equation:

(45)
dZ

dt
(t, ω) = K(t, Z(t, ω)) + L(t, Z(t, ω))W (t, ω) ((t, ω) ∈ J × Ω)

uniquely determined by the initial condition:

(46) Z(0, ω) = X0(ω) (ω ∈ Ω)

By W , one denotes the fictitious random process called white noise. One
imagines that:

(47) B(ds, ω) =W (s, ω)ds

20◦ Let us show that there is precisely one solution Z to the integral form
(44) of the stochastic differential equation (45). Let τ be any positive real
number. Let β be a nonnegative real number for which:

(48) |K(t, x) −K(t, y)| ∨ |L(t, x) − L(t, y)| ≤ β|x− y|

where t is any real number for which 0 ≤ t ≤ τ and where x and y are any real
numbers. Let t′ and t′′ be any real numbers for which 0 ≤ t′ < t′′ ≤ τ and
let Σ := [ t′, t′′ ]. Let Xt′ be any function in L2

t′(Ω). Let T be the mapping
carrying WΣ to itself, defined as follows:

T(X)(t, ω) := Xt′(ω) +
∫

[ t′,t ]
K(s,X(s, ω))ds+

∫
[ t′,t ]

L(s,X(s, ω))B(ds, ω)

where X is any mapping in WΣ and where (t, ω) is any ordered pair in Σ×Ω.
The second of the foregoing integrals is Ito’s Integral I[ t′,t ]. We will prove
that:

(50)
[T(X ′) − T(X ′′),T(X ′) − T(X ′′)]Σ

≤ 2β2(1 + τ2)(t′′ − t′)[X ′ −X ′′, X ′ −X ′′]Σ

where X ′ and X ′′ are any mappings in WΣ. Hence, if t′′ − t′ is sufficiently
small then T is a contraction mapping carrying WΣ to itself.

21◦ Let us assume for the moment that we have proved relation (50). Let:

0 = t0 < t1 < t2 < · · · < tk−1 < tk = τ
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be a partition of [0, τ ] for which:

2β2(1 + τ2)(tj+1 − tj) < 1 (0 ≤ j < k)

By repeated application of the Contraction Mapping Principle, we can design
a mapping Zτ in Wτ such that:

(51) Zτ (t, ω) := X0(ω)+
∫

[0,t ]

K(s, Zτ (s, ω))ds+
∫

[0,t ]

L(s, Zτ (s, ω))B(ds, ω)

where (t, ω) is any ordered pair in [ 0, τ ] × Ω. Letting τ tend to ∞, we can
obtain the random process Z in W satisfying (and uniquely determined by)
relation (44).

22◦ Let us prove relation (50). Let X ′ and X ′′ be any mappings in WΣ. Let
us adopt the following notational compressions:

F (s, ω) := K(s,X ′(s, ω)) −K(s,X ′′(s, ω))
G(s, ω) := L(s,X ′(s, ω)) − L(s,X ′′(s, ω))

((s, ω) ∈ Σ × Ω)

We have:

[T(X ′) − T(X ′′),T(X ′) − T(X ′′)]Σ

=
∫

Σ

∫
Ω

∣∣ ∫
[ t′,t ]

F (s, ω)λ(ds) +
∫

[ t′,t ]
G(s, ω)B(ds, ω)

∣∣2P (dω)λ(dt)

≤ 2
∫

Σ

{ ∫
Ω

|
∫

[ t′,t ]
F (s, ω)λ(ds) |2P (dω)

+
∫

Ω

|
∫

[ t′,t ]
G(s, ω)B(ds, ω) |2P (dω)

}
λ(dt)

≤ 2
∫

Σ

{
(t− t′)2

∫
Ω

∫
[ t′,t ]

F (s, ω)2λ(ds)P (dω)

+
∫

[ t′,t ]

∫
Ω

G(s, ω)2P (ω)λ(ds)
}
λ(dt)

≤ 2
∫

Σ

{
(t− t′)2β2

∫
[ t′,t ]

∫
Ω

|X ′(s, ω) −X ′′(s, ω)|2P (dω)λ(ds)

+ β2

∫
[ t′,t ]

∫
Ω

|X ′(s, ω) −X ′′(s, ω)|2P (dω)λ(ds)
}
λ(dt)

≤ 2β2(1 + τ2)[X ′ −X ′′, X ′ −X ′′]Σ
∫

Σ

λ(dt)

= 2β2(1 + τ2)(t′′ − t′)[X ′ −X ′′, X ′ −X ′′]Σ

which proves relation (50).
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23◦ Let us emphasize that the random process Z ′ = Z which appears on
the left side of relation (44) and the random processs Z ′′ = Z which appears
(twice) on the right side of relation (44) are, though indistinguishable, not
identically the same as mappings. However, with reference to Articles 11◦,
12◦, and 13◦, we may arrange that Z ′ have continuous trajectories and we may
infer that, modulo P , the random process Z in W which satisfies relation (44)
is uniquely determined as a mapping carrying J × Ω to R.
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