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1 Random Processes

1°  Let (Q,F,P) be a probability space. By definition, 2 is a set, F is a
o-algebra of subsets of 2, and P is a normalized finite nonnegative measure
on F. Let L?(9) be the real hilbert space comprised of the square integrable
real-valued measurable functions defined on 2. We will employ the following
notations:

(1) [F,G] ::/F(w)G(w)P(dw) (F € L*(Q), G € L*(Q))
Q

and

(2) 1] = /Q H(w)P(dw)  (H € I*(Q)

For any functions F and G in L?(f2), one regards F and G as indistinguishable
iff:

(3) [F—G,F-G]=0

2°  Let J be the interval in R comprised of the nonnegative real numbers.
Let X be lebesgue measure on the o-algebra of borel subsets of J. By a real-
valued random process on J, one means a measurable mapping X carrying the
product space J x Q to R. For such a mapping, we will employ the following
notation:

(4) X(s)(w)=Xsw) =X(s,w) =X,(s) = X(w)(s) (seJ, we)
We will require that:

(5) X, € L*(Q) (0<s)



In effect, then, one may regard the random process X as a mapping carrying
J to L2(Q):

J =5 12(Q)
jointly measurable in s and w. One says that X is continuous in the mean
iff, as a mapping carrying J to L?(£2), X is continuous. One says that X has

continuous trajectories iff, for each w in €2, X, is continuous (as a real-valued
function defined on J). In this case, one may regard X as a mapping carrying

Q to C(J): .
o X o

jointly measurable in s and w. By C(J), one denotes the set comprised of all
continuous real-valued functions defined on J.

3° Let B be a real-valued random process on .J which defines a Brownian
motion, with start state 0:

(6) By =0

The various basic properties of B will emerge in due course. For each r in J,
let &, be the o-subalgebra of F comprised of all sets of the form:

B(4)

T

where A is any borel subset of R. However, with regard to our subsequent
description of the Ito Integral, let us take & to be the o-subalgebra of F
comprised of all sets N in F for which either P(N) = 0 or P(N) = 1. In
turn, let Fs be the o-subalgebra of F generated by the union of the various
o-subalgebras &, where 0 <r < s:

(7) Fo=|J & (0<s)

0<r<s
Clearly:
(8) F.CF (0<s<t)

We will assume that the o-subalgebra of F generated by the union of the
various o-subalgebras F; is F itself:

(9) F=U 7%

0<s
We obtain a filtration of F:
(10) Fs T F
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It may happen that:

(11) F=U 7 (0<p
0<s<t
or that:
(12) Fo=(1F (0<s)
s<t

In the former case, one says that the filtration of F is left continuous; in the
latter case, right continuous. In general, neither condition holds. However,
Brownian motion has continuous trajectories, so both conditions hold.

4°  For each s in J, let L2(€2) be the closed linear subspace of L?(2) com-
prised of all functions in L?(2) which are measurable with respect to F.
Clearly:

(13) Q) CLIQ)  (0<s<t)

Relation (9) entails that the closure of (the linear span of) the union of the
various closed linear subspaces L2(Q) is L?(12) itself. We obtain a filtration
of L2(£2):

(14) LI(Q) 1 L*(Q)

5° For each s in J, let II; be the orthogonal projection operator carrying
L2(Q) to L3(Q). For each function H in L2(), II,(H) is the conditional
expectation of H with respect to Fi:
[ ML) Pe) = 11,1, 1]
A

= [H7 Hs(lA)}

1 (A e Fy)

= [ H(w)P(dw)
A

6° One refers to a random process X as a martingale with respect to the
given filtration of F iff:

(15) (X)) =X, (0<r<s)



It follows that:

(16) [Xs, 1] = [Xo, 1] (seJ)
so one may say that the martingale X has mean m := [Xj, 1]. Moreover:
(17) (Xe—X,) LL2(Q) (0<r<s)

7° By definition, B is a martingale (having mean 0) with respect to the
given filtration of F, so:

(18) ,.(Bs) =B, (0<r<5s)
and:
(19) (Bs —B,) LL2(Q) (0<r<s)

By definition:

(20) [Bs — By,Bs — By| = (s —) (0<r<s)

This relation entails that B is (uniformly) continuous in the mean. Moreover:

H(B, - B,), H(B, — B,)]
= [H*(B. - B,)*.1]

= [H27 1][(33 - Br)zv 1]
=[H,H|(s—7)

(21) (0<r<s, He L Q)

because, by definition, H? and (Bs — B,.)? are independent. By L°(Q2), one
denotes the real algebra of real-valued functions H defined on §2, measurable
with respect to F,., and bounded (modulo P).

2  The Ito Integral
8° Let ¢ and t” be any real numbers for which 0 < ¢’ < ¢”. Let X := [¢/,t"].

Let Wy be the real linear space comprised of all measurable mappings X
carrying the product space X x 2 to R, which meet the requirements that:

(22) X, e L2(Q) (' <s<t”)
and:
(23) /E (X4, X,JA(ds) < 0o
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Let Wy be supplied with the following inner product:
(24) [X,Y]y = / [Xs, Ys]\(ds) (X eWs, Y eWs)
b

For any mappings X and Y in Wk, one regards X and Y as indistinguishable
iff:

(25) [X-Y,X-Y]g=0

By applying Fubini’s Theorem, one can readily show that X and Y are in-
distinguishable iff there exists a set N in Fy» such that P(N) = 0 and such
that, for each w in Q\ N, there is a borel subset M., of ¥ such that A(M,,) =0
and, for each t in X\M,,, X, (t) = Y, (¢t). Now one may define the real linear
mapping I, carrying Wy to L2,(Q2) as follows. For mappings in Wy of the
form:

(26) H1p, o t'<r<s<t’, HeLX(Q)
one defines:
(27) IZ(Hl[nS)) := H(Bs; — By)

One applies relation (21) to show that, on the linear span WY of mappings of
the foregoing form, Iy, preserves inner products; and one applies elementary
arguments to show that W is dense in Wx. One completes the definition
of Iy, by passing to limit in the mean, obtaining the following fundamental
relation:

(28) [Is(X),Is(Y)] =[X,Y]s (X eWs, Y € Wy)

One refers to this relation as Ito’s Relation of Isometry. It entails that Iy is
injective modulo the relation of indistinguishability on Ws;.

9°  We will employ the following notation for the Ito Integral:

(29) In(X)(w) = /2 X(s,0)B(ds,w) (X € W)
Y= [t t"]

10° Now let W be the real linear space comprised of all real-valued random
processes X on J which meet the requirements:

(30) X, eL*(Q) (0<s)
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and:
(31) /[0 [ XN(@s) <00 (05
it
Let W be supplied with the following (pseudo-) inner products:
32 [X,V], = /[Ot][XS,YS})\(ds) O<t, XeW,Yew)

For any random processes X and Y in W, one regards X and Y as indistin-
guishable iff:

(33) X-V,X-Y=0 (0<¢)

By applying Fubini’s Theorem, one can readily show that X and Y are indis-
tinguishable iff there exists a set N in F such that P(N) = 0 and such that,
for each w in Q\ N, there is a borel subset M, of J such that A\(M,,) = 0 and,
for each ¢ in J\M,,, X, (t) = Y, (t).

11° Assembling the foregoing terms, we may describe the Ito Integral I
as the linear mapping carrying W to W, defined and uniquely characterized
by the conditions that:

0 Hfo<t<r

(34) I(Hl[m))t:: H(B;—B,) ifr<t<s (0<r<s, He LX(Q))
H(Bs;—B,) ifs<t

and:

(35) I(X)nI(Y)]=[X,Y], (0<t, XeW, Yew)

One presumes to define the Ito Integral I as follows:

(36) I(X) = LX |W)  (0<t, XeW)
where:
(37) Wt = W[O,t] and It = I[O,t]

Clearly, I(X) is a mapping carrying J x € to R and it meets requirements (30)
and (31). However, it may not be jointly measurable in t and w. Nevertheless,
one can show that I(X) is a martingale (the definition of which does not
require that I(X) be jointly measurable in ¢ and w). One may then apply
Doob’s Theorem to “adjust” I(X) so that it has continuous trajectories. For
each t in J, the old I(X); and the new I(X); are indistinguishable in L?((2).
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At this point, one should recall our specification of &. (See Article 3°.) By
this specification, it is plain that the new I(X); must lie in L?(£2).

12° One can readily show that, for any mapping X carrying J x €2 to R, if,
for each ¢ in J, X; is measurable in w, and if, for each w in £, X, is continuous
in ¢, then X is jointly measurable in ¢ and w. It follows that the new I(X) is
jointly measurable in ¢t and w.

13° In this context, one should note that, for any random processes X and
Y in W, if X and Y have continuous trajectories then X and Y are indistin-
guishable iff there exists a set N in F such that P(N) = 0 and such that, for
each w in Q\N, X, =Y. Hence, modulo P, one can specify I(X) precisely
as a mapping carrying J x  to R.

14° The range of I proves to be the real linear subspace of W comprised of all
martingales which have mean 0. This result is the Martingale Representation
Theorem.

15° We will employ the following notation:

(38) L(X)(w) = X (s,w)B(ds,w) (0<t, XeWw)
[0,¢]

The range of I; proves to be the closed linear subspace of L?(2) comprised
of the functions H for which [H,1] = 0. One refers to this fact as Ito’s
Representation Theorem.

3 Ito Processes

16° Let U and V be any random processes in W. Let X be any function in
L3(92). Such a function must in fact be constant modulo P. In terms of U,
V', and Xy, one defines the random process X in W as follows:

(39) X(t,w) = Xo(w) + U(s,w)ds + V(s,w)B(ds,w)
[0,t] [0,t]

where (¢,w) is any ordered pair in J x Q. In the foregoing relation, the second
integral is Ito’s integral I;. Of course, one must verify that the first integral
defines a random process in W. One refers to X as the Ito Process defined
by U, V, and Xj.

17° For clarity, let us note that relation (39) (and all such relations to follow)
must be interpreted modulo A x P. However, for each w in €2, the first integral
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in relation (39) is necessarily continous in ¢. By design of the Ito Integral,
the second integral is also continuous in ¢t. Hence, one may (implicitly) aug-
ment relation (39) by requiring that the random process X have continuous
trajectories. Therefore, modulo P, one can specify X precisely as a mapping
carrying J x Q to R. (See Article 13°.)

18° Now let M be the family comprised of all real-valued functions L defined
and continuous on J X R, which meet the requirement that, for each 7 in J,
there is a nonnegative real number 3 such that:

(40) |L(t,x) — L(t,y)| < Blx —y| (0<t<7,zeR,ycR)
It follows that:

(41) [L(t, x| <y(I+]z])  (0<t<7 z€eR)
where:

vi= BV sup |L(t,0)]
0<t<T

Let L be any function in M. For any random process X in W, one may form
the mapping X carrying J x  to R as follows:

(42) X(tw)=Lt, X(t,w) ((tw)eJxQ)

One can readily show that X is a random process in V. To this end, one
needs only requirement (41).

4  Stochastic Differential Equations

19° Let X be any function in LZ(Q) and let K and L be real-valued functions
in M. For each random process X in W, we may form the random process
Y in W as follows:

(43) Y(t,w) :== Xo(w) + K(s, X (s,w))ds —|—/ L(s,X(s,w))B(ds,w)
[0,t] [0,t]

where (t,w) is any ordered pair in J x . In this way, we obtain a mapping
T carrying W to itself:

T(X):=Y (XeWw)

We plan to show that (in a certain sense) T is a contraction mapping on W
and that, as a result, it admits a unique fixed “point” Z:

(44) Z(tw) = Xo(w) + K(S,Z(s,w))ds—i—/ L(s, Z(s,w)) B(ds,w)
[0,t] [0,¢]
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where (t,w) is any ordered pair in J x 2. One interprets this random process
Z as the solution of the stochastic differential equation:

(45) Cfi—f(t,w) = K(t, Z(t,w)) + L(t, Z(t,w))W (t,w) ((t,w) € I x Q)

uniquely determined by the initial condition:
(46) Z(0,w) = Xo(w)  (weQ)

By W, one denotes the fictitious random process called white noise. One
imagines that:

(47) B(ds,w) = W(s,w)ds

20° Let us show that there is precisely one solution Z to the integral form
(44) of the stochastic differential equation (45). Let 7 be any positive real
number. Let § be a nonnegative real number for which:

(48) |K(t,z) = K(t,y)| Vv [L(t,x) = L(t,y)| < fle —y|

where ¢ is any real number for which 0 < ¢ < 7 and where x and y are any real
numbers. Let ¢’ and ¢ be any real numbers for which 0 < ¢ < ¢ < 7 and
let ¥ := [#/,t"]. Let Xy be any function in L? (). Let T be the mapping
carrying Wx to itself, defined as follows:

TG0 = Ko@)+ [ K(s,X(s,w))ds—i—/[tl | 1 X0 B,

where X is any mapping in Wy, and where (¢,w) is any ordered pair in ¥ x .
The second of the foregoing integrals is Ito’s Integral Ij; ;. We will prove
that:

[T(X") = T(X"),T(X") = T(X")]z

(50) S 262(1 +T2)(t// _ t/)[X/ _ XN7X, _ X”]E

where X’ and X" are any mappings in Wx. Hence, if ¢/ — ' is sufficiently
small then T is a contraction mapping carrying Wy to itself.

21° Let us assume for the moment that we have proved relation (50). Let:

O=to<ti <to< -+ <tp_1 <tp=T71



be a partition of [0, 7] for which:
20°(L+72)(tj1 —t;) <1 (0<j<k)

By repeated application of the Contraction Mapping Principle, we can design
a mapping Z, in W, such that:

(51) Z.(t,w) := Xo(w)+ K(S,ZT(s,w))ds—&—/ L(s, Z;(s,w))B(ds,w)
[0,t] [0,t]

where (t,w) is any ordered pair in [0,7] x . Letting 7 tend to co, we can

obtain the random process Z in W satisfying (and uniquely determined by)
relation (44).

22° Let us prove relation (50). Let X’ and X" be any mappings in Wy. Let
us adopt the following notational compressions:

F(s,w) = K(s,X'(s,w)) — K(s,X"(s,w))

G(s,w) = L(s, X'(s,w)) — L(s, X" (5,w)) ((s,w) € 2 x Q)

We have:
[T(X') - T(X"), T(X') = T(X")]»

//‘ t’t]st ) [f/t]G(S’w)B(ds’w>‘QP(dW)\(dt)

<2 ([ / A(ds) [ P(dw)
" /Q [, GlorerBids. ) P e
<2 fu-vr [ /[ | AP ()
/[”]/Gsw )A(ds) A(dt)
<2 {o-rpe [ [ 1X(0) - X (s PPN
T /] [ X (5.) = X7 (s P PG @) b

<2821+ )X - X", X' — X”}E/ A(dt)
=
— 262(1 4 7,2)(t// _ t/)[X/ _ X”,X’ _ XN]E
which proves relation (50).
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23° Let us emphasize that the random process Z' = Z which appears on
the left side of relation (44) and the random processs Z” = Z which appears
(twice) on the right side of relation (44) are, though indistinguishable, not
identically the same as mappings. However, with reference to Articles 11°,
12°, and 13°, we may arrange that Z’ have continuous trajectories and we may
infer that, modulo P, the random process Z in W which satisfies relation (44)
is uniquely determined as a mapping carrying J x € to R.
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