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1 Introduction

01◦ One can describe classical crystals either in terms of tempered measures
on the real space R3 comprised of position vectors or in terms of tempered
measures on the reciprocal space R3 comprised of wave vectors. The two
descriptions are related by the Fourier Transform. We explain these matters
in the following five sections. With reference to the work of N. D. Mermin
and his collaborators, we then propose a definition of generalized crystal . This
definition takes form not in real space but in reciprocal space. Finally, we seek
significant relations between the proposed generalized crystals in reciprocal
space and the familiar Delone sets and quasicrystals in real space.

2 Lattices

02◦ Let us introduce the standard basis vectors for R3:

E1 =





1
0
0



 , E2 =





0
1
0



 , E3 =





0
0
1





By a lattice L in the real space R3, one means a subset of R3 of the form:

L := L(Z3)

where L is any invertible linear mapping carrying R3 to itself. The vectors:

Fj = L(Ej) (1 ≤ j ≤ 3)

form a lattice basis for L.
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03◦ By the lattice M in the reciprocal space R3 reciprocal to L, one means
the corresponding subset of R3:

M := (L−1)∗(Z3)

This lattice figures in the X-ray analysis of classical crystals. The vectors:

Gj = (L−1)∗(Ej) (1 ≤ j ≤ 3)

form a lattice basis for M.

04◦ Let us take a moment to be careful. We have presented L and M in
terms of L. We need to show that, for any invertible linear mappings L1 and
L2 carrying R3 to itself, if L1(Z3) = L2(Z3), so that L1 and L2 define the
same lattice L in the real space R3, then (L−1

1 )∗(Z3) = (L−1
2 )∗(Z3), so that

(L−1
1 )∗ and (L−1

2 )∗ define the same lattice M in the reciprocal space R3. To
that end, let Z be the invertible linear mapping L−1

2 L1 carrying R3 to itself.
Clearly, Z(Z3) = Z3. One can easily check that, (Z−1)∗ = ((L−1

2 )∗)−1(L−1
1 )∗.

Of course, (Z−1)∗(Z3) = Z3. Hence, (L−1
1 )∗(Z3) = (L−1

2 )∗(Z3).

05◦ For any U and V in R3:

U • V = L(U) • (L−1)∗(V ) = X • Y

where X = L(U) and Y = (L−1)∗(V ). By this fact, one can see all the more
clearly the special relation between L and M. Thus, for any Y in R3, Y ∈M

iff, for any X in L, X • Y ∈ Z. Moreover:

Fj •Gk = δjk (1 ≤ j ≤ 3, 1 ≤ k ≤ 3)

06◦ Let Y be any vector in M for which Y 6= 0. Let y1, y2, and y3 be the
(integral) coordinates for Y relative to the prescribed lattice basis for M:

Y = ykGk

Let us assume that the gcd of these integers is 1. For each ℓ in Z, let Hℓ(Y )
be the lattice hyperplane in L comprised of all vectors X in L for which:

X • Y = ℓ

These hyperplanes, all nonempty, lie parallel to one another. The spacing is
measured by the reciprocal of the length of Y :

1√
Y • Y
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The collective:
Hℓ(Y ) (ℓ ∈ Z)

of lattice hyperplanes exhausts L:

L =
⋃

ℓ∈Z

Hℓ(Y )

The ordered triple (y1, y2, y3) is called the Miller Index for the collective.
See the following Figure, which displays an example of L and M, reduced in
dimension to R2.

Figure 1

3 Crystallographic Groups

07◦ For smooth expression, we require certain terminology and notation.
First, let G stand for the group of all invertible linear mappings carrying
R3 to itself. For each T in R3 and for each Λ in G, we introduce the affine

mapping:
[T,Λ]

carrying R3 to itself. For each X in R3:

[T,Λ](X) = T + Λ(X)

We refer to T as the translational part and to Λ as the linear part of [T,Λ].
Clearly, [T,Λ] is invertible. The family A of all such mappings forms a group
under composition, since the following relations prevail:

[T1,Λ1][T2,Λ2] = [T1 + Λ1(T2),Λ1Λ2]

[T,Λ]−1 = [−Λ−1(T ),Λ−1]

Of course, the identity in A is I = [0, I], where I is the identity in G.

08◦ Let us label several basic subgroups of A. Let O be the subgroup of G
comprised of all invertible linear mappings Λ which are orthogonal and let C
be the subgroup of A comprised of all affine mappings [T,Λ] for which Λ ∈ O.
One refers to the latter as Cartesian mappings. Let H be the subgroup of G
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comprised of all invertible linear mappings Λ under which the standard lattice
Z3 is invariant:

Λ(Z3) = Z3

Let G+ be the subgroup of G comprised of all Λ for which 0 < det(Λ) and
let A+ be the subgroup of A comprised of all [T,Λ] for which Λ ∈ G+. Let
O+ = O ∩G+, let C+ = C ∩A+, and, finally, let H+ = H ∩G+.

09◦ For any subgroup B of A, we introduce the translational part T of B,
comprised of all T in R3 for which [T, I] ∈ B; and we introduce the linear

part Λ of B, comprised of all Λ in G for which there is some T̄ in R3 such
that [T̄ ,Λ] ∈ B. Clearly, T is a subgroup of R3 and Λ is a subgroup of G.
We claim that T is invariant under Λ. To prove the claim, we note that, for
each Λ in Λ, there is some T̄ in R3 such that [T̄ ,Λ] lies in B. Hence:

[T̄ ,Λ][T, I][T̄ ,Λ]−1 = [Λ(T ), I]

We infer that Λ(T ) lies in T. We conclude that T is invariant under Λ.

10◦ Let B be a subgroup of A. Let T be the translational part and let Λ

be the linear part of B. We can present these groups neatly in a short exact
sequence:

T
θ−→ B

φ−→ Λ

where, for each T in T:
θ(T ) = [T, I]

and where, for each [T̄ ,Λ] in B:

φ([T̄ ,Λ]) = Λ

11◦ Let Ω be the quotient group R3/T. Let ρ be the natural homomorphism
carrying R3 to Ω:

ρ(V ) = V +T

where V is any position vector in R3. For any Λ in Λ, we can define the
(quotient) isomorphism Λ̂ carrying Ω to itself, as follows:

Λ̂(V +T) = Λ(V ) +T

where V is any position vector in R3. Obviously:

Λ̂ρ = ρΛ
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12◦ For each Λ in Λ, let γ(Λ) be the subset R3 comprised of all position
vectors T̄ such that [T̄ ,Λ] ∈ B. Clearly, γ(Λ) is a coset of T in R3. Hence,
we can interpret γ as a mapping carrying Λ to Ω. One can easily check that
γ meets the condition:

γ(Λ′Λ′′) = γ(Λ′) + Λ̂′(γ(Λ′′))

where Λ′ and Λ′′ are any members of Λ. One refers to such a mapping as a
1-cocycle.

13◦ In brief, the subgroup B of A defines the ordered triple:

B −→ (T,Λ, γ)

where T is the translational part and Λ is the linear part of B, and where γ
is the corresponding 1-cocycle carrying Λ to Ω = R3/T. By definition, one
can recover B from (T,Λ, γ). In fact, for each [T̄ ,Λ] in A:

(∗) [T̄ ,Λ] ∈ B iff Λ ∈ Λ and T̄ ∈ γ(Λ)

14◦ Conversely, let (T,Λ, γ) be an ordered triple for which T is a subgroup
of R3, Λ is a subgroup of G under which T is invariant, and γ is a 1-cocycle
carrying Λ to Ω = R3/T. By invoking the foregoing condition (∗), one can
define a subgroup B of A, which in turn defines (T,Λ, γ).

15◦ Obviously, the correspondence between subgroups B of A and ordered
triples (T,Λ, γ) is bijective.

16◦ Let us note the significant case in which B is the semi-direct product of
T and Λ:

B = T >< Λ

The members of B are the affine mappings [T,Λ] such that T ∈ T and Λ ∈ Λ.
The corresponding 1-cocycle γ is constant:

γ(Λ) = T

where Λ is any member of Λ.

17◦ For later reference, let us describe the relation of conjugacy for subgroups
of A in terms of the corresponding ordered triples. Thus, let B1 and B2 be
subgroups of A and let (T1,Λ1, γ1) and (T2,Λ2, γ2) be the corresponding
ordered triples. For any [T, L] in A, we have:

B2 = [T, L]B1[T, L]
−1
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iff:
T2 = L(T1)

Λ2 = LΛ1L
−1

γ2 = [T, L] · γ1
The last of the foregoing relations means that, for any Λ2 in Λ2:

([T, L] · γ1)(Λ2) = (Ω2 − Λ̂2(Ω2)) + L̂(γ1(L
−1Λ2L)

where Ω2 = ρ2(T ) = T +T2.

18◦ These relations suggest the following action of A on ordered triples. For
any [T, L] in A and for any ordered triple (T,Λ, γ):

[T, L] · (T,Λ, γ) = (L(T), LΛL−1, [T, L] · γ)

For each Λ in LΛL−1:

([T, L] · γ)(Λ) = (Ω− Λ̂(Ω)) + L̂(γ(L−1ΛL)

where Ω = T + L(T) and where Λ̂(Ω) = Λ(T ) + L(T).

19◦ Clearly, the subgroups B1 and B2 of A are conjugate in A iff the cor-
responding ordered triples (T1,Λ1, γ1) and (T2,Λ2, γ2) lie in the same orbit
under the action of A.

20◦ By a crystallographic group, one means any subgroup B of C such that
the translational part T of B is a lattice in R3. Of course, the linear part Λ
of B is a subgroup of O. One refers to T as the lattice and to Λ as the point

group for B.

21◦ Since T is invariant under Λ, Λ must be finite. Moreover, for each Λ in
Λ, tr(Λ) ∈ Z. It follows that, for each (rotation) Λ in Λ∩O+, the order of Λ
must equal 1, 2, 3, 4, or 6. This condition is the celebrated Crystallographic

Restriction.

22◦ The first objective of Mathematical Crystallography is to classify the
crystallographic groups under various natural equivalence relations. The least
restrictive instance of such relations is the relation of isomorphism. Thus,
for any crystallographic groups B′ and B′′, one says that B′ and B′′ are
equivalent iff they are isomorphic. By the Theorem of Bieberbach, B′ and
B′′ are isomorphic iff they are conjugate in A. By systematic computation,
one finds that there are 219 isomorphism classes, organized by a hierarchy
of 14 forms of lattices in R3 and a typology of 32 conjugacy classes of finite
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subgroups of O. One calls the former the Bravais Lattices and the latter
the Point Groups.

23◦ Let us sketch the computations required to find the isomorphism classes
of crystallographic groups. To that end, let us introduce a more flexible
definition of crystallographic group. Let B be any subgroup of A. Let us
say that B is a crystallographic∗ group iff the translational part T of B is
a lattice in R3 and the linear part Λ of B is finite. For such a group B,
one can easily show that there are crystallographic∗ subgroups B1 and B2

of A such that B1, B, and B2 are mutually conjugate in A and such that
Λ1 ⊆ O and T2 = Z3. Of course, Λ2 ⊆ H. Clearly, B1 is a crystallographic
group in the conventional sense. Hence, for the objective of classification by
isomorphism, the more flexible definition yields no unwarranted equivalence
classes. However, the definition directs attention to the groups B2 for which
T2 = Z3 and Λ2 ⊆ H. For such groups, we can compute the isomorphism
classes in terms, essentially, of integer arithmetic.

24◦ ...... Details in Burckhardt.

25◦ For the crystallographer, the crystallographic groups B′ and B′′ are
equivalent iff they are conjugate in A+. Under this slightly more refined
relation, designed to respect orientation, each of eleven of the foregoing iso-
morphism classes breaks into two subclasses. Hence, for the crystallographer,
there are 230 equivalence classes of crystallographic groups.

4 Tempered Measures

26◦ Let A stand for the family of all Borel subsets of R3 and let B stand
for the subfamily of A comprised of all bounded Borel subsets of R3. For
our development of classical and of generalized crystals, we require complex
valued measures µ defined on B. For such a measure µ, let us emphasize the
requirement that, for any sequence:

B1, B2, B3, . . .

of mutually disjoint sets in B, if: ∞
⋃

j=1

Bj

lies in B then:

µ(

∞
⋃

j=1

Bj) =

∞
∑

j=1

µ(Bj)

27◦ For any nonnegative real valued measure ν defined on B, one can, by
routine argument, introduce a nonnegative extended real valued measure ν•
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defined on A such that, for any B in B, ν•(B) = ν(B). In practice, one simply
identifies ν and ν•:

ν = ν•

28◦ Given a complex valued measure µ defined on B, one can introduce the
nonnegative real valued measure |µ| defined on B, called the total variation of
µ. It is characterized by the condition that, for any nonnegative real valued
measure ν defined on B, if, for any B in B:

|µ(B)| ≤ ν(B)

then, for any B in B:
|µ|(B) ≤ ν(B)

29◦ Now let f be any complex valued Borel function defined on R3. One
says that f is tempered iff, for each positive integer ℓ, there is a positive real
number C such that, for each X in R3:

(1 +X •X)ℓ |f(X)| ≤ C

Let F stand for the family of all such functions.

30◦ Let µ be a complex valued measure defined on B. One says that µ is
tempered iff there is some positive integer ℓ such that:

∫

R3

(1 +X •X)−ℓ |µ|(dX) < ∞

For such a measure and for each f in F :
∫

R3

|f |(X) |µ|(dX) < ∞

Moreover, the following integral would have precise meaning:

∫

R3

f(X)µ(dX)

Consequently, one may interpret the tempered measure µ as a linear functional
on the linear space F of all tempered functions.

31◦ Clearly, the Lebesgue measure λ defined on B is tempered.

32◦ Let µ be a complex valued measure defined on B. One says that µ has
bounded support iff there is some A in B such that:

|µ|(R3\A) = 0
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That is, for any B in B, if A ∩B = ∅ then µ(B) = 0. Let us write:

supp(µ) ⊆ A

to express this condition. Obviously, if µ has bounded support then µ is
tempered.

33◦ Now let K be a closed discrete, hence countable subset of R3. Let δK be
the nonnegative real valued measure defined on B such that, for each X in K:

δK({X}) = 1

while, for any B in B, if K ∩B = ∅ then δK(B) = 0. One refers to δK as the
dirac comb defined by K.

34◦ One says that K is a Delone subset of R3 iff there exist positive real
numbers r and R such that, for any open ball B in R3, if the radius of B is
less than r then B contains at most one member of K, while if the radius of
B is greater than R then B contains at least one member of K. For example,
K might be the union of a finite family of cosets of a lattice L in R3:

K =

k
⋃

j=1

(Sj + L)

where:
S1, S2, . . . , Sk

are any position vectors in R3. In any case, if K is a Delone set then:

∫

R3

(1 +X •X)−3 δK(dX) =
∑

X∈K

(1 +X •X)−3 < ∞

Hence, δK is tempered and, for each tempered function f defined on R3:

∫

R3

f(X)δK(dX) =
∑

X∈K

f(X)

35◦ For any tempered function f defined on R3 and for any affine mapping
[T,Λ] carrying R3 to itself, we define the transform:

[T,Λ] · f

of f by [T,Λ] as follows:

([T,Λ] · f)(X) = f([T,Λ]−1(X))
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where X is any position vector in R3. Clearly, [T,Λ] ·f is a tempered function
defined on R3. As usual, we find the following relations for a group operating
upon a set:

([T1,Λ1][T2,Λ2]) · f = [T1,Λ1] · ([T2,Λ2] · f)
[0, I] · f = f

36◦ In turn, for any complex valued measure µ defined on B and for any
affine mapping [T,Λ] carrying R3 to itself, we define the transform:

[T,Λ] · µ

of µ by [T,Λ] as follows:

[T,Λ] · µ = [T,Λ]∗(µ)

That is, for any B in B:

([T,Λ] · µ)(B) = µ([T,Λ]−1(B))

Clearly, [T,Λ] · µ is a complex valued measure defined on B. Again, we find
the following relations for a group operating upon a set:

([T1,Λ1][T2,Λ2]) · µ = [T1,Λ1] · ([T2,Λ2] · µ)
[0, I] · µ = µ

37◦ For later reference, we note that, for any tempered function f , for any
tempered measure µ, and for any affine mapping [T, L]:

∫

R3

([T, L]−1 · f)(X)µ(dX) =

∫

R3

f(X)([T, L] · µ)(dX)

38◦ Finally, let µ be a complex valued measure defined on B. Let us denote
by Cµ the stabilizer of µ in C. That is, for any [T,Λ] in C:

[T,Λ] ∈ Cµ iff [T,Λ] · µ = µ

Of course, Cµ is a subgroup of C. One refers to Cµ as the symmetry group
of µ. Let us denote the translational part of Cµ by Tµ and the linear part of
Cµ by Λµ. Again, we can present these significant groups neatly in a short
exact sequence:

Tµ
θ−→ Cµ

φ−→ Λµ
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5 Classical Crystals

39◦ Now we are prepared to describe the basic concept of our subject. By a
classical crystal , we mean a nonnegative real valued measure ν defined on B
such that the symmetry group Cν of ν is a crystallographic group. One refers
to Tν as the lattice and to Λν as the point group for the classical crystal ν.

40◦ For the methods of X-ray crystallography, the identification of a classical
crystal with a nonnegative measure seems to be adequate. For any B in B,
one interprets ν(B) to be the number of electrons contained in B. Hence, the
measure serves as a model for the distribution of electrons within the crystal.
It seems that the electrons play the dominant role in the scattering of X-ray
radiation and hence in the forming of diffraction patterns. Of course, for other
experimental methods, one invokes other models.

41◦ For any classical crystals ν′ and ν′′, one says that ν′ and ν′′ are equivalent
iff the symmetry groups Cν′ and Cν′′ are conjugate in A+. We hasten to note
that, for any crystallographic group B, there is some classical crystal ν such
that:

Cν = B

Indeed, one can take ν to be a Dirac comb:

ν = δK

where K is the union of a suitable finite family of cosets of a lattice L in
R3. In any case, there are 230 equivalence classes of classical crystals. Nature
has grown instances of some of such classes but not of others. Later, we will
describe the instance of the diamond crystal, an especially interesting case.

42◦ For any classical crystals ν′ and ν′′, one says that ν′ and ν′′ are congruent
iff there is a Cartesian mapping [T,Λ] in C+ such that ν′′ = [T,Λ] · ν′. One
may say that such classical crystals ν′ and ν′′ are physically indistinguishable.
Of course:

Cν′′ = [T,Λ]Cν′[T,Λ]−1

so that ν′ and ν′′ are equivalent.

43◦ Let ν be any classical crystal and let L = Tν be the lattice of translational
symmetries of ν. Let J be a cross section for L. By definition, J ∈ B and the
sets:

[X, I](J) (X ∈ L)

form a partition of R3. Very often, but not always we take J to be a basic

parallelopiped for L:
J = L(I)
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where L is an invertible linear mapping carrying R3 to itself for which:

L = L(Z3)

and where I is the standard unit cube in R3, comprised of the position vectors:

U = U jEj

for which:
0 ≤ U j < 1 (1 ≤ j ≤ 3)

44◦ Let n be the restriction of ν to J:

n(B) = ν(J ∩B)

where B is any set in B. Obviously, supp(n) ⊆ J. We refer to n as the local

electron distribution for the classical crystal ν, relative to J. To distinguish n
and ν, we refer to ν itself as the global electron distribution.

45◦ For each B in B:

ν(B) = ν(
⋃

X∈L

[X, I](J) ∩B)

=
∑

X∈L

ν([X, I](J) ∩ B)

=
∑

X∈L

ν(J ∩ [X, I]−1(B)) (because [X, I] · ν = ν)

=
∑

X∈L

n([X, I]−1(B))

=
∑

X∈L

∫

J

ch[X,I]−1(B)(W )n(dW )

=

∫

R3

∫

J

chB(W +X)n(dW )δL(dX)

Hence, the global electron distribution ν for a classical crystal is the convolu-
tion of the local electron distribution n (relative to a selected cross section J

for L) and the Dirac comb δL defined by L:

ν = n ∗ δL
=

∑

X∈L

[X, I] · n
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46◦ For any W and X in R3:

2W •X ≤ 2W •X + (W −X) • (W −X) = W •W +X •X

Hence:

(1 + (W +X) • (W +X)) ≤ 2(1 +W •W )(1 +X •X)

Replacing first X by X −W and then W by −W , we find that:

(1 +X •X) ≤ 2(1 +W •W )(1 + (W +X) • (W +X))

That is:

(1 + (W +X) • (W +X))−1 ≤ 2(1 +W •W )(1 +X •X)−1

Hence:
∫

R3

(1 + V • V )−3 ν(dV )

=

∫

R3

∫

J

(1 + (W +X) • (W +X))−3n(dW )δL(dX)

=

∫

R3

∫

J

8(1 +W •W )3(1 +X •X)−3n(dW )δL(dX)

<∞

It follows that ν is tempered. Moreover, for any tempered function f defined
on R3:

∫

R3

f(V )ν(dV ) =

∫

R3

∫

J

f(W +X)n(dW )δL(dX)

=
∑

X∈L

∫

J

f(W +X)n(dW )

47◦ For later reference, we note that, for any affine mapping [T,Λ] carrying
R3 to itself:

[T,Λ] · ν = ([T,Λ] · n) ∗ ([0,Λ] · δL) = ([T,Λ] · n) ∗ δΛ(L)

In particular:
[T, I] · ν = ([T, I] · n) ∗ δL

48◦ Let us introduce the compact Abelian quotient group Ω:

Ω = R3/L
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together with the natural homomorphism ρ carrying R3 to Ω:

ρ(V ) = V + L

where V is any position vector in R3. We replace n by its image σ under ρ:

σ = ρ∗(n)

Now we may regard σ as the local electron distribution. In fact, since the
restriction of ρ to J is bijective, σ contains the same information as n. Let us
show that σ remains unchanged though J be varied. To that end, let J1 and
J2 be any cross sections for L and let n1 and n2 be the corresponding local
electron distributions. For each B in B:

ρ∗(n1)(B + L) = n1(B + L)

= ν(J1 ∩ (B + L))

= ν(
⋃

X∈L

[X, I](J2) ∩ J1 ∩ (B + L) )

=
∑

X∈L

ν
(

J1 ∩ [X, I](J2 ∩ (B + L))
)

=
∑

X∈L

ν
(

[X, I]−1(J1) ∩ J2 ∩ (B + L)
)

(because [X, I] · ν = ν)

= ν(
⋃

X∈L

[−X, I](J1) ∩ J2 ∩ (B + L) )

= ν(J2 ∩ (B + L))

= n2(B + L)

= ρ∗(n2)(B + L)

Hence:
ρ∗(n1) = ρ∗(n2)

It follows that σ has invariant meaning, independent of selection of the cross
section J for L.

49◦ Now we know that each classical crystal ν determines an ordered pair
(L, σ):

ν −→ (L, σ)

where L is a lattice in R3 and where σ is a nonnegative real valued measure
defined on the Borel subsets of the quotient group Ω. Conversely, each such
ordered pair (L, σ) determines a classical crystal ν:

(L, σ) −→ ν
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Thus:
ν = n ∗ δL

where J is any cross section for L and where n is the nonnegative real valued
measure defined on B, designed to meet the conditions supp(n) ⊆ J and
ρ∗(n) = σ. One can easily adapt the computation displayed in the foregoing
article to show that ν remains the same though J be varied.

50◦ Let us note that the following composition of the foregoing mappings:

ν −→ (L, σ) −→ ν

returns each classical crystal ν to itself. That is so essentially by definition.
However, the alternative composition:

(L0, σ0) −→ ν −→ (L, σ)

returns an ordered pair (L0, σ0) to itself iff:

Tν = L0

In general, we have L0 ⊆ Tν = L and σ = π∗(σ0), where π is the natural
homomorphism carrying Ω0 to Ω:

π(V + L0) = V + L

where V is any position vector in R3. Given that:

(L0, σ0) −→ ν

we contend that Tν = L0 iff σ0 meets a certain condition of minimum trans-

lational symmetry.

51◦ Thus, for each T in R3, let τT be the translation onΩ0 defined as follows:

τT (V + L0) = T + V + L0

where V is any position vector in R3. In turn, let τT · σ0 be the transform of
σ0 by τT :

τT · σ0 = (τT )∗(σ0)

That is, for any B in B:

(τT · σ0)(B + L0) = σ0(−T +B + L0)
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We contend that, for each T in R3:

τT · σ0 = σ0 iff T ∈ Tν

To prove the contention, let us introduce a cross section J0 for L0 and the
restriction n0 of ν to J0. Let T be any vector in R3. Clearly, τT ρ0 = ρ0[T, I],
so:

τT · σ0 = (ρ0)∗([T, I] · n0)

Moreover:
[T, I] · ν = ([T, I] · n0) ∗ δL0

Let n̄0 stand for the restriction of ν to the cross section [T, I](J0) for L0. If
τT ·σ0 = σ0 then [T, I] ·n0 = n̄0; therefore [T, I] ·ν = n̄0 ∗δL0

= ν. Conversely,
if [T, I] · ν = ν then [T, I] ·n0 = n̄0; therefore τT ·σ0 = σ0. Hence, τT ·σ0 = σ0

iff T ∈ Lν .

52◦ Of course, τT is the identity mapping on Ω0 iff T ∈ L.

53◦ Now we can say that the correspondence:

ν ←→ (L, σ)

is bijective, provided that σ meets the condition of minimum translational
symmetry.

54◦ Let us digress to describe an interesting instance of classical crystals: the
diamond crystal . For this crystal, carbon atoms occupy the positions in R3

defined by the various vectors in the set:

K+ L

where:

L =
1

2





0 1 1
1 0 1
1 1 0



 (Z3)

where:

S0 =
1

4





0
0
0



 , S1 =
1

4





1
1
1



 = S

and where:
K = {S0, S1} = {O,S}
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Presumably, the distributions of electrons at each position in the crystal are
identical. Hence, as a first approximation, we can define the global electron
distribution for the diamond crystal as follows:

ν = δK ∗ δL =

1
∑

k=0

[Sk, I] · δL = δL + [S, I] · δL

55◦ Clearly, δK is the local electron distribution for ν, relative to the cross
section:

J =
1

2





0 1 1
1 0 1
1 1 0



 (I)

for L. One can easily verify that σ = ρ∗(δK) meets the condition of minimum
translational symmetry, so that Tν = L. However, it is instructive to check
the fact directly. Thus, for each T in R3:

[T, I] · (δL + [S, I] · δL) = [T, I] · δL + [T + S, I] · δL

Hence, [T, I] · ν = ν iff either:

T + L = L and T + S + L = S + L

or:
T + L = S + L and T + S + L = L

For the latter case, we would infer that 2S ∈ L, which is false. We conclude
that [T, I] · ν = ν iff T ∈ L. That is, Tν = L.

56◦ Among the 14 Bravais forms, one refers to L as the face centered cubic

lattice. Let us denote by:
OL

the subgroup of O comprised of all Λ for which Λ(L) = L. One can easily
check that:

Λ(L) = L iff Λ(Z3) = Z3

so that OL contains 48 members. We know that Λν ⊆ OL. We will find that
Λν = OL. Even so, the final description of Cν yields a surprise.

57◦ For each [T̄ ,Λ] in C:

[T̄ ,Λ] · (δL + [S, I] · δL) = [T̄ , I] · ([0,Λ] · δL + ([Λ(S), I] · ([0,Λ]) · δL)
= [T̄ , I] · (δΛ(L) + [Λ(S), I] · δΛ(L))

= [T̄ , I] · δΛ(L) + [T̄ + Λ(S), I] · δΛ(L)

17



Hence, [T̄ ,Λ] · ν = ν iff Λ ∈ OL and either:

T̄ + L = L and T̄ + Λ(S) + L = S + L

or:
T̄ + L = S + L and T̄ + Λ(S) + L = L

Moreover, for each Λ in OL:

Λ(





1
1
1



) =





Σ1

Σ2

Σ3





where each of Σ1, Σ2, and Σ3 equals either −1 or 1. It follows that either
S − Λ(S) ∈ L or S + Λ(S) ∈ L. By these relations, we are led to introduce
the partition:

OL = O0
L ∪ (−I)O0

L

of OL, where O0
L
is the subgroup of OL defined by the condition:

S − Λ(S) ∈ L

and where (−I)O0
L
is the coset of O0

L
defined by the condition:

S + Λ(S) ∈ L

Of course, the index of O0
L

in OL is 2, so O0
L

contains 24 members. By
inspection, we conclude that the members [T̄ ,Λ] of Cν stand in one or the
other of the following forms:

[T,Λ] (T ∈ L, Λ ∈ O0
L
)

and:
[T, I][S,Λ] (T ∈ L, Λ ∈ (−I)O0

L
)

In particular:
Λν = OL

58◦ By the foregoing analysis, we have shown that the symmetry group Cν

of the diamond crystal is an extension of the face centered cubic lattice L by
the full symmetry group OL of that lattice:

L
θ−→ Cν

π−→ OL

However, Cν is not the simple symmorphic case:

L >< OL
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comprised of all [T,Λ] in C of the form:

[T,Λ] (T ∈ L, Λ ∈ OL)

Rather, it is something “more interesting:” one of the nonsymmorphic cases,
just described. The group Cν contains symmetries:

[T̄ ,Λ] = [T̄ , I] [O,Λ]

for which neither [T̄ , I] nor [O,Λ] lies in Cν .

59◦ By the way, the lattice M reciprocal to L is the body centered cubic

lattice:

M =





−1 1 1
1 −1 1
1 1 −1



 (Z3)

60◦ Seeking simplicity in the description of classical crystals and in the inter-
pretation of diffraction patterns, crystallographers often violate the condition
of minimum translational symmetry. In effect, they employ ordered pairs
(L0, σ0) for which:

(L0, σ0) −→ ν

where L0 is strictly smaller than Tν but simpler in form. They recover the
translational symmetries in Tν\L0 from the translational symmetries of σ0.

61◦ Let us illustrate the practice just described, by means of the diamond
crystal. We have described the global electron distribution ν for the diamond
crystal as follows:

ν = δK ∗ δL
where L is the face centered cubic lattice:

L =
1

2





0 1 1
1 0 1
1 1 0



 (Z3)

where:

S0 =
1

4





0
0
0



 , S1 =
1

4





1
1
1





and where:
K = {S0, S1}
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We have noted that σ = ρ∗(δK) meets the condition of minimum translational
symmetry and we have verified that Tν = L. Now, however, let us replace L

by the strictly smaller simple cubic lattice Z3. Of course:

L =

3
⋃

j=0

(Fj + Z3)

where:

F0 =
1

2





0
0
0



 , F1 =
1

2





0
1
1



 , F2 =
1

2





1
0
1



 , F3 =
1

2





1
1
0





In turn, let us replace K by the strictly larger array Y:

Y =

3
⋃

j=0

1
⋃

k=0

{Fj + Sk}

See Figure 2. Clearly, I is a cross section for Z3, Y ⊆ I, the restriction of ν
to I is δY, and:

ν = δY ∗ δZ3

Let ρ0 be the natural homomorphism carrying R3 to Ω0 = R3/Z3 = T3. Let
σ0 = (ρ0)∗(δY). By design:

(Z3, σ0) −→ ν −→ (L, σ)

We can recover the translational symmetries in L\Z3 from the translational
symmetries for σ0, by verifying that, for any T in R3, τT · σ0 = σ0 iff there is
some j (0 ≤ j ≤ 3) such that:

T ∈ Fj + Z3

62◦ The following Figure suggests the disposition of Y as a subset of the
cube I:

Figure 2

The Figure shows the base for I in the (1, 2)-coordinate plane. The points in
Y represented by white disks have third coordinate 0; by white squares, 1/4;
by black disks, 1/2; by black squares, 3/4.
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63◦ For a second example, let us describe, briefly, the cesium chloride crystal.
For this crystal, chlorine atoms occupy the positions in R3 defined by the
various vectors in the set:

Z3

while cesium atoms occupy the positions in R3 defined by the various vectors
in the set:

{S}+ Z3

where:

S =
1

2





1
1
1





As a first approximation, we can define the global electron distribution for
the cesium chloride crystal as follows:

ν = (aδ{0} + bδ{S}) ∗ δZ3

where a and b are distinct positive real numbers. One can readily verify that:

Tν = Z3 and Λν = OZ3

and that Cν is the symmorphic case:

Cν = Z3 >< OZ3

6 Fourier Transforms

64◦ Crystallographers study the structure of classical crystals not by direct
but by indirect methods. They gather data from the diffraction patterns pro-
duced as the crystals interact with electromagnetic fields. By a formal analysis
of such interactions, they describe the relation between classical crystals and
diffraction patterns in terms of the relation between global electron distribu-
tions ν and Fourier Transforms ν̂. However, their procedures for recovering
the structure of classical crystals from the structure of diffraction patterns
are rendered problematic, but all the more interesting by the fact that data
gathered from the patterns yield not the complex values of ν̂ but only their
moduli.

65◦ Let us review the definition and the fundamental properties of the Fourier
Transform. Thus, let f be any complex valued smooth function defined on
R3. One says that f is rapidly decreasing iff f and all its partial derivatives
are tempered. Let F stand for the family of all such functions.
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66◦ For each f in F, one defines the Fourier Transform f̂ of f as follows:

f̂(Y ) =

∫

R3

exp(−2πiX • Y )f(X)λ(dX)

where λ is Lebesgue measure defined on B and where Y is any wave vector in
the reciprocal space R3. One finds that f̂ is rapidly decreasing and that:

f(X) =

∫

R3

exp(+2πiX • Y )f̂(Y )λ(dY )

where X is any position vector in the real space R3.

67◦ Let us note that the functions f and f̂ are related by the celebrated
Poisson Summation Formula:

∑

U∈Z3

f(U) =
∑

V ∈Z3

f̂(V )

68◦ Let us adapt the foregoing formula to an arbitrary pair L and M of
mutually reciprocal lattices. Thus, let L be an invertible linear mapping
carrying R3 to itself for which L = L(Z3) and M = (L−1)∗(Z3). For each f
in F, let g = f · L. For each V in R3:

ĝ(V ) =

∫

R3

exp(−2πi U • V )g(U)ν(dU)

=
1

|det(L)|

∫

R3

exp(−2πiL−1(X) • V )f(X)ν(dX)

Hence:

ĝ(V ) =
1

|det(L)| f̂((L
−1)∗(V ))

and therefore:

∑

X∈L

f(X) =
∑

U∈Z3

g(U) =
∑

V ∈Z3

ĝ(V ) =
1

|L|
∑

Y ∈M

f̂(Y )

where |L| = |det(L)|. One can easily show that |L| remains the same though
L be varied. Finally, we present the general Poisson Summation Formula:

√

|L|
∑

X∈L

f(X) =
√

|M|
∑

Y ∈M

f̂(Y )
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69◦ For each tempered measure µ defined on B, one defines the Fourier Trans-
form µ̂ of µ as follows:

µ̂(f) =

∫

R3

f̂(V )µ(dV )

where f is any function in F. We hasten to note that, so defined, µ̂ is simply
a linear functional on F. However, we contend that if µ coincides with a
classical crystal ν then in fact µ̂ can be identified with a tempered measure.

70◦ Let us prove the foregoing contention. Let ν be a classical crystal. Let
L = Tν , let J be a cross section for L, and let n be the restriction of ν to J.
As usual, we find:

ν = n ∗ δL
Let Ω = R3/L and let ρ be the natural homomorphism carrying R3 to Ω.
Let σ = ρ∗(n). As noted earlier, we find:

ν −→ (L, σ) −→ ν

Let M be the lattice reciprocal to L. For each Y in R3, Y ∈M iff, for each
X in L:

exp(+2πiX • Y ) = 1

Hence, we can identify M with the dual group Ω∗ for Ω. One should note
that:

κ =
1

λ(J)
ρ∗(λ↓J)

is the normalized haar measure on Ω, where ρ is the canonical mapping carry-
ing R3 to Ω = R3/L. That said, we can introduce the (normalized) Fourier
Transform σ̂ of σ as follows:

σ̂(Y ) =
1

λ(J)

∫

Ω

〈〈 X + L, Y 〉〉∗σ(d(X + L))

=
1

λ(J)

∫

J

exp(−2πiX • Y )n(dX)

where Y is any reciprocal vector in M. Of course, λ(J) = |L|.

71◦ Finally, let us introduce the complex valued measure σ̂ · δM defined on
B such that, for each Y in M:

(σ̂ · δM)({Y }) = σ̂(Y )
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while, for any B in B, if B ∩M = ∅ then (σ̂ · δM)(B) = 0. Obviously, σ̂ · δM
is tempered and, for each f in F:

∫

R3

f(Y )(σ̂ · δM)(dY ) =
∑

Y ∈M

σ̂(Y )f(Y )

We contend now that:
ν̂ = σ̂ · δM

That is, for each f in F:

ν̂(f) =

∫

R3

f(Y )(σ̂ · δM)(dY )

To prove the contention, we compute:

ν̂(f) =

∫

R3

f̂(V )ν(dV )

=

∫

R3

∫

J

f̂(W +X)n(dW )δL(dX)

=

∫

R3

∫

J

∫

R3

exp(−2πi(W +X) • Y )f(Y )λ(dY )n(dW )δL(dX)

= |L|
∫

R3

∫

R3

exp(−2πiX • Y )σ̂(Y )f(Y )λ(dY )δL(dX)

= |L|
∫

R3

ĝ(X)δL(dX) (where g = σ̂ f)

= |L|
∑

X∈L

ĝ(X)

=
∑

Y ∈M

g(Y ) (because |L||M| = 1, 68◦)

=
∑

Y ∈M

σ̂(Y )f(Y )

=

∫

R3

f(Y )(σ̂ · δM)(dY )

72◦ For the case in which:
n = δ{O}

we find a reformulation of the Poisson Summation Formula:

√

|L| δ̂L =
√

|M|δM
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73◦ Now let us attempt to explain the physical relation between classical
crystals and the corresponding diffraction patterns, in terms of the mathe-
matical relation between tempered nonnegative real valued measures and the
corresponding Fourier Transforms. We will apply the formalism of Scattering
Theory, treating the interaction between classical crystals and electromagnetic
fields, roughly, as a problem of elastic scattering.

74◦ ◦
◦
◦
◦
◦
◦
◦

7 Generalized Crystals

75◦ Let ν be a classical crystal. The symmetry group Cν for ν figures in a
short exact sequence, as follows:

L
θ−→ Cν

φ−→ Γ

where L = Tν is the lattice and where Γ = Λν is the point group for ν. Let
Ω be the compact Abelian quotient group:

Ω = R3/L

and let ρ be the natural homomorphism carrying R3 to Ω. We can identify
ν with the ordered pair:

(L, σ)

where σ is the nonnegative real valued measure on Ω, defined by introducing
a cross section J of L and, in turn, the restriction n of ν to J, then projecting
n to Ω by ρ:

σ = ρ∗(n)

The measure σ remains the same though J be varied. In turn, we can identify
the ordered pair (L, σ) with the ordered pair:

(M, σ̂)

where M is the lattice reciprocal to L and where σ̂ is the (normalized) Fourier
Transform of σ. Of course, M coincides with the discrete Abelian group Ω∗

dual to Ω and σ̂ is a function defined on M.
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76◦ We can display the natural pairing between Ω = R3/L and Ω∗ = M as
follows:

〈〈 V + L, Y 〉〉 = exp(2πi V • Y )

where V is any position vector in R3 and where Y is any reciprocal vector in
M.

77◦ Let h be a complex valued function defined on M. One says that h is
positive definite iff, for any positive integer m and for any reciprocal vectors:

Y1, Y2, . . . , Ym

in M, the m by m matrix:

{h(Yk − Yℓ)} (1 ≤ k ≤ m, 1 ≤ ℓ ≤ m)

is self adjoint and nonnegative. We can apply the Theorem of S. Bochner to
characterize the functions σ̂ as continuous positive definite functions defined
on M.

78◦ Let us emphasize that σ meets the condition of minimum translational
symmetry. For σ̂, this condition means that supp(σ̂) generates M.

79◦ Let us refer to the ordered pair (M, σ̂) as the dual form for ν.

80◦ For classical crystals, we have introduced the relations of congruence and
equivalence. See articles 41◦ and 42◦. Let us now seek expressions for these
relations in terms of dual forms.

81◦ As usual, let A be the group of all affine mappings carrying R3 to itself,
and let C be the subgroup of A comprised of all Cartesian mappings carrying
R3 to itself. Let N be the set of all classical crystals. With reference to article
36◦, let us introduce the action of A on N, as follows:

([T,Λ], ν) −→ [T,Λ] · ν = [T,Λ]∗(ν)

Of course, we obtain by restriction the action of C on N. For any ν′ and ν′′

in N, ν′ and ν′′ are congruent iff they lie in the same orbit in N under C+.
They are equivalent iff their stabilizers Cν′ and Cν′′ in C are conjugate in
A+.

82◦ Now let Σ be the set of all ordered pairs (L, σ), where L is a lattice in the
real space R3 and where σ is a nonnegative real valued measure defined on
the compact Abelian quotient group Ω = R3/L, which meets the condition
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of minimum translational symmetry. For any [T,Λ] in A and for any (L′, σ′)
and (L′′, σ′′) in Σ, let us write:

(L′′, σ′′) = [T,Λ] · (L′, σ′)

to express the conditions that:

L′′ = Λ(L′)

σ′′ = (τT Λ̂)∗(σ
′)

where Λ̂ is the isomorphism carrying Ω′ to Ω′′ defined by Λ and where τT is
the translation carrying Ω′′ to itself defined by T . To be clear, let us note
that:

Λ̂(V1 + L′ ) = Λ(V1) + L′′

τT (V2 + L′′) = T + V2 + L′′

where V1 and V2 are any position vectors in R3. Clearly, these relations define
an action of A on Σ and, by restriction, an action of C on Σ.

83◦ The bijective mapping:

ν −→ (L, σ)

carrying N to Σ intertwines the actions of A. That is, for any [T,Λ] in A and
for any ν′ and ν′′ in N, ν′′ = [T,Λ] · ν′ iff (L′′, σ′′) = [T,Λ] · (L′, σ′), where
(L′, σ′) and (L′′, σ′′) are the ordered pairs in Σ corresponding to ν′ and ν′′.
Of course, this consideration motivated the definition of the action of A on
Σ in the first place.

84◦ The various mappings:
τT Λ̂

are instances of affine mappings carrying Ω′ to Ω′′: compositions of isomor-
phisms and translations. In our context, one can easily show that every affine
mapping carrying Ω′ to Ω′′ stands in the foregoing form. Among the affine
mappings, the Cartesian mappings carrying Ω′ to Ω′′ are those for which Λ
is orthogonal.

85◦ In turn, let Σ̂ be the set of all ordered pairs (M, σ̂), where M is a lattice
in the reciprocal space R3 and where σ̂ is a positive definite complex valued
function defined on M, for which supp(σ̂) generates M. For any [T,Λ] in A

and for any (M′, σ̂′) and (M′′, σ̂′′) in Σ̂, let us write:

(M′′, σ̂′′) = [T,Λ] · (M′, σ̂′)
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to express the conditions that:

M′′ = (Λ∗)−1(M′)

σ̂′′ =
1

|det(Λ)|ρ
′′(T )∗((Λ∗)−1 · σ̂′)

where ρ′′ is the natural homomorphism carrying R3 to Ω′′. To be clear, let
us note that, for any reciprocal vector Z in M′′:

((Λ∗)−1 · σ̂′)(Z) = σ̂′(Λ∗(Z))

ρ′′(T )∗(Z) = 〈〈 T + L′′, Z 〉〉∗

Replacing Z by the reciprocal vector Y = Λ∗(Z) in M′, we find that:

σ̂′′((Λ∗)−1(Y )) =
1

|det(Λ)| 〈〈 Λ
−1(T ) + L′, Y 〉〉∗σ̂′(Y )

Of course, T +L′′ ∈ Ω′′ = R3/L′′. Clearly, these relations define an action of

A on Σ̂ and, by restriction, an action of C on Σ̂.

86◦ For any [T,Λ] in C, the foregoing relations take the following simpler
form:

M′′ = Λ(M′)

σ̂′′ = ρ′′(T )∗(Λ · σ̂′)

and:
(Λ · σ̂′)(Z) = σ̂′(Λ−1(Z))

ρ′′(T )∗(Z) = 〈〈 T + L′′, Z 〉〉∗

so that:
σ̂′′(Λ(Y )) = 〈〈 Λ−1(T ) + L′, Y 〉〉∗σ̂′(Y )

87◦ The bijective mapping:

(L, σ) −→ (M, σ̂)

carrying Σ to Σ̂ intertwines the actions of A. That is, for any [T,Λ] in A and
for any (L′, σ′) and (L′′, σ′′) in Σ:

(L′′, σ′′) = [T,Λ] · (L′, σ′) iff (M′′, σ̂′′) = [T,Λ] · (M′, σ̂′)

where (M′, σ̂′) and (M′′, σ̂′′) are the ordered pairs in Σ̂ corresponding to
(L′, σ′) and (L′′, σ′′). Let us prove that it is so. Obviously, Λ(L′) = L′′ iff
Λ∗(M′′) = M′. For each V in R3, let W = T + Λ(V ), so that:

(τT Λ̂)(V + L′) = W + L′′
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For each Y in M′′, we have:

σ̂′′(Y ) =
1

|L′′|

∫

Ω′′

〈〈 W + L′′, Y 〉〉∗σ′′(d(W + L′′))

and:

1

|det(Λ)| 〈〈 T + L′′, Y 〉〉∗σ̂′(Λ∗(Y ))

=
1

|det(Λ)| 〈〈 T + L′′, Y 〉〉∗ 1

|L′|

∫

Ω′

〈〈 V + L′,Λ∗(Y ) 〉〉∗σ′(d(V + L′))

=
1

|L′′|

∫

Ω′

〈〈 W + L′′, Y 〉〉∗σ′′(d(W + L′′))

because:

|det(Λ)| = |L
′′|
|L′|

Hence:

σ′′ = (τT Λ̂)∗(σ
′) iff σ̂′′ =

1

|det(Λ)|ρ
′′(T )∗((Λ∗)−1 · σ̂′)

Of course, this consideration motivated the definition of the action of A on
Σ̂ in the first place.

88◦ Let us review our position. We have described classical crystals in three
different but equivalent ways:

ν, (L, σ), (M, σ̂)

yielding sets N, Σ, and Σ̂ in bijective correspondence. For these sets, we have
described the natural actions of the affine groupA, and we have noted/verified
that these actions are, in the obvious sense, equivalent:

A.ν′ = ν′′ ⇐⇒ A.(L′, σ′) = (L′′, σ′′)⇐⇒ A.(M′, σ̂′) = (M′′, σ̂′′)

where A = [T, L] is any affine transformation, where ν′ and ν′′ are any classical
crystals, where (L′, σ′) and (L′′, σ′′) are the corresponding component forms in
real space, and where (M′, σ̂′) and (M′′, σ̂′′) are the corresponding component
forms in reciprocal space.

89◦ Cocycle Identity?

8 SuperSpace

9 Computations
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