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1 Introduction

1◦ In the study of a physical system, one often encounters constraints, ex-
pressed as differential 1-forms defined on the phase space of the system. For
example, the following differential 1-forms on R4 appear in the study of a disk
rolling on a horizontal plane, so constrained that the axis of rotation of the
disk remains always parallel to the plane:

ω1 = dX1 − sin(X3)dX4

ω2 = dX2 + cos(X3)dX4

See Reference 2•. One inquires whether or not the constraints are integrable,
that is, holonomic. For the case just described, one would say that the con-
straints are integrable iff one can (in principle) find functions:

F 1
1 , F 2

1 , F 1
2 , F 2

2 ; G1, G2

such that:
ω1 = F 1

1 dG1 + F 1
2 dG2

ω2 = F 2
1 dG1 + F 2

2 dG2

Granted such functions, one can analyze the motion of the physical system in
terms of the various 2-dimensional surfaces jointly defined by G1 and G2:

G1 = Γ1

G2 = Γ2

where Γ1 and Γ2 are any two real numbers.

2◦ The Theorem of Frobenius informs us that one can (in principle) find
such functions iff:

dω1 ∧ Ω = 0

dω2 ∧ Ω = 0
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where:
Ω = ω1 ∧ ω2

This condition of Frobenius can be expressed in several equivalent forms. See
Section 3.

3◦ In the following section, we will summarize the properties of differential
forms requisite to understanding the Theorem of Frobenius. For now, let us
proceed informally to show that, for the case just described, the conditions of
Frobenius are in fact not satisfied.

4◦ First, we calculate Ω:

Ω = (dX1 − sin(X3)dX4) ∧ (dX2 + cos(X3)dX4)

= dX1 ∧ dX2 + cos(X3)dX1 ∧ dX4 + sin(X3)dX2 ∧ dX4

Similarly, we calculate dω1 and dω2:

dω1 = −cos(X3)dX3 ∧ dX4

dω2 = −sin(X3)dX3 ∧ dX4

Finally, we calculate dω1 ∧ Ω and dω2 ∧ Ω:

dω1 ∧ Ω = −cos(X3)dX1 ∧ dX2 ∧ dX3 ∧ dX4

dω2 ∧ Ω = −sin(X3)dX1 ∧ dX2 ∧ dX3 ∧ dX4

To make these computations, we have used the facts that dX4 ∧ dX2 =
−dX2 ∧ dX4, dX4 ∧ dX4 = 0, ddX1 = 0, and so forth. In any case, it is
plain that the conditions of Frobenius fail.

2 Differential Forms

5◦ For the space Rn, let us introduce coordinate variables as follows:

Xj (1 ≤ j ≤ n)

In turn, let us introduce the basic differential 1-forms on Rn:

dXj (1 ≤ j ≤ n)

We regard these basic forms as monomials of degree 1, from which we will
build up a kind of polynomial algebra, the exterior algebra of differential forms
on Rn.
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6◦ To denote the operation of multiplication, we adopt the now conventional
symbol ∧. The characteristic properties of the exterior algebra stem from the
following relations:

(1) dXj ∧ dXk = −dXk ∧ dXj (1 ≤ j, k ≤ n)

In particular:

(2) dX� ∧ dX� = 0 (1 ≤ � ≤ n)

Now we can write down the monomial of degree 0:

1

the monomials of degree 1:

dXj (1 ≤ j ≤ n)

the monomials of degree 2:

dXj ∧ dXk (1 ≤ j < k ≤ n)

the monomials of degree 3:

dXj ∧ dXk ∧ dX� (1 ≤ j < k < � ≤ n)

and so forth. The monomial of degree n brings the chain to an end:

dX1 ∧ dX2 ∧ · · · ∧ dXn

7◦ In general, one writes the monomials of degree p in the following (neces-
sarily) baroque form:

dXj1 ∧ dXj2 ∧ · · · ∧ dXjp (1 ≤ j1 < j2 < · · · < jp ≤ n)

In such terms, the most general homogeneous differential form of degree p
stands as follows:

ω = Hj1j2 ··· jpdXj1 ∧ dXj2 ∧ · · · ∧ dXjp

The various coefficients:

Hj1j2 ··· jp (1 ≤ j1 < j2 < · · · < jp ≤ n)

are functions on Rn. In brief, one refers to such a form as a differential p-form
on Rn.
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8◦ Let us emphasize the fact that differential 0-forms on Rn are simply
functions on Rn.

9◦ For any differential p′-form ω′ and for any differential p′′-form ω′′, one
may apply relation (1) to prove the following characteristic property of the
exterior algebra:

(3) ω′ ∧ ω′′ = (−1)p′p′′
ω′′ ∧ ω′

10◦ Now let us describe the fundamental operator d, the exterior derivative.
First, we declare that, for any differential 0-form:

H

on Rn, dH is the differential 1-form on Rn defined as follows:

(4) dH =
∂H

∂Xj
dXj

Second, we declare that, for any differential p-form:

ω = Hj1j2 ··· jp
dXj1 ∧ dXj2 ∧ · · · ∧ dXjp

on Rn, dω is the differential (p + 1)-form on Rn defined as follows:

(5) dω =
∂Hj1j2 ··· jp

∂Xj
dXj ∧

(
dXj1 ∧ dXj2 ∧ · · · ∧ dXjp

)

Of course, one should apply relations (1) and (2) to express dω in the conven-
tional form described in Article 7◦.

11◦ Clearly, for any differential p-forms ω′ and ω′′:

(7) d(ω′ + ω′′) = dω′ + dω′′

Moreover, for any differential p′-form ω′ and for any differential p′′-form ω′′:

(6) d(ω′ ∧ ω′′) = dω′ ∧ ω′′ + (−1)p′
ω′ ∧ dω′′

Finally, by patient computation, one can show that, for any differential p-form
ω on Rn:

(8) d d ω = 0
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3 The Theorem of Frobenius

12◦ Let r be any integer for which 1 ≤ r < n. Let:

ωj (1 ≤ j ≤ r)

be any differential 1-forms on Rn. We can express these forms as follows:

ωj = Hj
� dX�

where:
Hj

� (1 ≤ j ≤ r, 1 ≤ � ≤ n)

are suitable functions on Rn. We require that the matrix of functions:

(Hj
� )

have rank r on Rn. Under this condition, one says that the given forms are
independent .

13◦ One says that the system:

ωj (1 ≤ j ≤ r)

of independent differential 1-forms on Rn is integrable iff one can (in principle)
find functions:

F j
k , Gk (1 ≤ j, k ≤ r)

on Rn such that:
ωj = F j

k dGk (1 ≤ j ≤ r)

Given such functions, one can introduce the (n − r)-dimensional surfaces
jointly defined as follows:

Gj = Γj (1 ≤ j ≤ r)

where, for each j, Γj is any real number. In the study of physical systems,
these integral surfaces play a fundamental role. So do the integrating factors:

F j
k (1 ≤ j, k ≤ r)

14◦ Let us introduce the differential r-form:

Ω = ω1 ∧ ω2 ∧ · · · ∧ ωr
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The Theorem of Frobenius asserts that the foregoing condition of integrability
is logically equivalent to any one of the following conditions:

(•) The original differential 1-forms satisfy:

dωj ∧ Ω = 0 (1 ≤ j ≤ r)

(•) There exists a differential 1-form α on Rn satisfying:

dΩ = α ∧ Ω

(•) There exist differential 1-forms on Rn:

θj
k (1 ≤ j, k ≤ r)

which satisfy:
dωj = θj

k ∧ ωk (1 ≤ j ≤ r)

15◦ One finds by experience that the significant functions:

F j
k , Gk (1 ≤ j, k ≤ r)

which figure in the condition of integrability require much artful computa-
tion to produce them. The foregoing conditions of Frobenius (notably the
first) signal whether or not the effort is worthwhile. By the way, the formal
proof of the Theorem of Frobenius helps, in favorable cases, to facilitate the
computation. See reference 1•.

16◦ We conclude with a confession. To emphasize the basic structure of the
Theorem of Frobenius, we have ignored the important distinction between
local and global . Typically, the forms and functions are defined not on Rn

but on open regions in Rn and the stated relations among them hold only on
open subregions. In practice, these matters take care of themselves.
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