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This paper examines the validity and power of the Hausman Test under weak instruments. Monte-
Carlo simulations are used to generate an instrumented variable of varying strength and varying
degrees of correlation with the error of the second stage regression. The validity and power of the
Hausman Test is checked under these different circumstances. The Hausman Test is found to be
invalid under weak instruments and its power varies depending on instrument strength.

I. INTRODUCTION

Endogeneity of a regressor in Ordinary Least Squares
regressions leads to biased estimators. Correlation be-
tween a regressor and the error term of a regression is
a violation of the Ordinary Least Squares assumption
cov(x, ε) = 0. A natural question to ask if whether we
can test if a suspect variable is in fact endogenous. Jerry
Hausman developed a test the relies on the technique of
instrumental variables. Since their introduction, instru-
mental variables have become a popular way to deal with
endogenous regressors. Proper instruments are variables
that are correlated with an endogenous regressor but are
not themselves correlated with the error, ε. The general
idea of the Hausman test is as follows: If the variable is
not endogenous, then asymptotically there should be no
difference between the OLS and the IV estimates; they
should converge to the same value. The Hausman test
operates under the following assumptions:

H0 : cov(x, ε) = 0

Ha : cov(x, ε) 6= 0

meaning that rejection of the null hypothesis indicates
an endogenous regressor, while failure to reject is sup-
port for an exogenous regressor. OLS estimates are more
efficient than IV estimates, meaning that if a regressor
is exogenous, then OLS is the preferred estimation tech-
nique.

This paper asks the question of whether the Haus-
man Test is valid under weak instruments. To test in-
strument strength, we regress the endogenous variable
against the exogenous variables of the regression and the
instruments. If the joint F-statistic of the instruments
(or T-statistic if there is only one) is greater than 10,
then the instruments are considered strong. This value
was determined by Stock and Yogo after taking into ac-
count the biases produced by OLS and IV regression.
We will use Monte-Carlo simulations to generate a sus-
pect variable which is correlated to varying degrees with
its instruments. The Hausman Test is then performed
and we will check the distribution of the X2 statistics to
test for validity.

The next question we will address is the power of the
Hausman Test to pick up the correlation between an in-
strumented variable and the error, ε, of the second stage

regression given the varying strengths of this instrument.
To answer these questions, we will generate the different
circumstances described above using Monte-Carlo simu-
lations, and test the Hausman Test given the fact that
we will know the true answers. This procedure is gone
into with more depth below.

II. PROCEDURE

A. Monte-Carlo Simulations

The Monte-Carlo simulations and subsequent tests
based off of this generated data were performed with
Stata do-files. These files are included in the Appendix.
Also included in the do-files are detailed comments for
each step. We use a sample size of 1000 for the origi-
nal data. We know that IV estimates are asymptotically
consistent, thus we want to insure that the sample size is
large enough to allow for this. Were the sample size not
large enough, then this would bias the future results.

The first step of this study is to find the F-statistics
associated with different standard deviations used as in-
put to generate the error term for the instrumentation
process, or the first stage regression. This is done with
the ChooseSigma do file in Appendix A.

B. Validity

Once standard deviations associated with instrument
strength are determined, we can then proceed with IV
regressions and the Hausman Test. This is accomplished
with the HausmanTest do file in Appendix B. We gener-
ate our instruments with no correlation to the error term
ε, thus we know the null hypothesis of cov(x, e) = 0 to
be true. First we perform the uninstrumented regression
and store the estimates. Then we use Stata’s command
IVregress which automatically performs a two stage least
squares regression and store the instruments from that.
Finally we preform the Hausman test to check if these two
sets of estimates are the same. We note now that Stata
uses the incorrect number of degrees of freedom for the
X2 results it reports. The degrees of freedom should be
the same as the number of suspect endogenous variables.
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Stata will use the number of instruments provided for the
variable, which is not necessarily the same. We correct
for this in our do-file my manually telling Stata the df to
be used.

We simulate the HausmanTest do-file with 2000 repe-
titions. We store the X2 statistics and their p-values as
variables. From the X2 statistic we generate the variable
fail which indicates whenever the X2 stat is over the crit-
ical value. We will use this fail variable to see if the test
fails the expected amount of time.

C. Power

For power, we alter the HausmanTest do-file to now
have the error term ε of the second stage regression cor-
related with the instrumented variable’s error term, ν.
This is the HausmanTestCorrelation do-file in Appendix
D. To do this, we make ε a function of ν, and we first
use the Correlation do file in Appendix C to find the
right formula to use. We find the best functions to use
to create .25, .5, and .75 correlation are:

ε = .25ν + rnormal(0, σν)

ε = .6ν + rnormal(0, σν)

ε = 1.2ν + rnormal(0, σν)

where σν is the standard deviation used to generate
the error term ν.

We then simulate the HausmanTestCorrelation do-file
using 2000 repetitions and report the results similar to
the way described in the validity section.

III. RESULTS

The results of the preliminary search for instrument
using the ChooseSigma do-file is summarized in Tab ??.

TABLE I: Strengths of instruments dependent on standard
deviation of the generated error term.

F-Statistic

Standard Deviation Median Mean

5

10

15

20

25

30

35

40

45

We choose to use standard deviations of 10, 15, 25,
35, and 45 to represent our instrument strengths. This
provides a range of instruments which are undoubtably
strong, strong by the Stock and Yogo standard, statisti-
cally significant, borderline statistically significant, and
no longer statistically significant, respectively.

TABLE II: Strengths of instruments dependent on standard
deviation of the generated error term.

Fails H0: Same

Standard Deviation Expected Observed p-value

10 100 107 .47

15 100 86 .16

25 100 60 0

35 100 42 0

45 100 25 0

A. Validity

Tab. ?? summarizes the result of the test as to whether
the null hypothesis is rejected the expected amount of
time. This is done by looking at the number of fails. We
will compare the difference between the expected and
observed numbers of fail. We can see that for strong in-
struments, the expected and observed number of fails is
statistically the same, meaning that a true null hypoth-
esis of exogeneity is rejected 5% of the time as expected.
This is not true for the three weak instruments. The
observed number of fails is less than the expected for
all weak instruments, meaning that a true null hypoth-
esis is rejected less than 5% of the time. Note that we
also see this downward trend even amongst the strong in-
struments. The five percent critical values for the weak
instruments were

σ = 25, σ = 35, σ = 45,

which shows a steady decrease, which indicates a gen-
eral leftward shift of the Hausman X2 statistics. This
means that the Hausman X2 statistics themselves no
longer follow a X2 distribution. This is further indicated
by Fig. ?? and Fig. ?? which are a series of graphs gen-
erated by the Stata pchi command, which generates a
chi-squared probability plot. This plot graphs a variable
against it’s position were it part of a chi-squared dis-
tribution. If a chi-squared distribution is followed, we
expect this relation to be one to one and thus to see a
straight line with slope 1. Fig. ?? shows that as instru-
ment strength decreases, the top of the distribution falls
away from the projected line, indicating that less of the
distribution than expected is located in the tail.
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FIG. 1: X2 Probability Plots for the X2 statistics generated
by Hausman Test for strong instruments. If a X2 distribution
is followed, we expect to a straight line of slope one. This is
true for the two strong instruments graphed here.

B. Power

Tab. ?? summarizes the percentage rejections by the
Hausman Test for instruments of varying strengths and
varying correlation with ε.

We find that for strong instruments, all correlations
of 50% or more are rejected, however, even for extremely
strong instruments, minor correlations of around 25% are
not rejected all of the time. As instrument strength de-
creases, power of the test decreases as well.

IV. INTERNAL AND EXTERNAL VALIDITY

Given the generated nature of the data, internal va-
lidity issues are directly controlled based on the inputs
to the Monte-Carlo simulations. There are no external
validity issues, as this study is generally just looking at
the reliability of a statistical test, and leaves any exter-
nal application of the results up to the future users of the
Hausman Test.

FIG. 2: X2 Probability Plots for the X2 statistics generated
by Hausman Test for the three weak instruments. We start
to see the far end of the graph drop away from the expected
line.

V. CONCLUSION

A. Validity

We find that the Hausman Test is not valid for weak in-
struments. The X2 statistics generated by Monte-Carlo
simulations for weak instruments no longer follow the ex-
pected distribution. Further tests which could expound
on this would be to find the exact instrument strength
for which the failure rate drops below 5% percent. From
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TABLE III: Percent failure of the Hausman Test dependent
on correlation and instrument strength.

Standard Deviation Correlation Fail

.25 89.5%

10 .5 100%

.75 100%

.25 56%

15 .5 100%

.75 100%

.25 18%

25 .5 81%

.75 100%

.25 7%

35 .5 39%

.75 92%

.25 3%

45 .5 16%

.75 60%

the data we have, it would be reasonable to assume that
this occurs somewhere around an F-statistic of 10, which
is the generally used threshold for a strong instrument.
Also, we could use a greater variety of standard devia-
tions and track the decline of the critical values in more
detail. This would give a more comprehensive view of
how and when the test becomes invalid.

B. Power

The power of the test is proportional to the strength of
the instruments, which is a conclusion to be expected. In-

terestingly enough though, we find that even for strong
instruments, weak correlations between the instrument
and the error term are not rejected 100% of the time.
Remember: Failure to reject a null hypothesis does not
directly imply that the null hypothesis is not true. This
is supported by our results. This is a cautionary note to
not rely completely on statistics. If theory states that
a variable may be endogenous, yet statistical tests can-
not detect it, this does not mean that endogeneity is not
present! The results from this test give light on the lev-
els of correlation needed for the Hausman Test to become
reliable, and leaves it up to the econometrician to now
decide what levels of potential endogeneity are accept-
able.

Interestingly, we note that even for weak instruments,
high correlation of at least 75% is detected a reasonable
amount of time. However, as just determined in the va-
lidity section: the Hausman test becomes invalid for weak
instruments, and thus the results of these trial may be
called into question.

Further tests would be to make a more detailed study
of what level of correlation is needed for the Hausman
Test to reject 100% for each instrument strength. This
could be done for more variation of strong instruments.
Overall, this deeper study would give a very good pic-
ture as to how reliable the Hausman Test is. This would
allow econometricians to be more informed when making
decisions as to the results of the statistical tests they use.


