

Econ 201: Introduction to Economic Analysis

October 26 Lecture: Externalities

Jeffrey Parker Reed College

Daily dose of The Far Side

www.thefarside.com

"Henry! Our party's total chaos! No one knows when to eat, where to stand, what to ... Oh, thank God! Here comes a Border collie!" 2

Preview of this class session

- Externalities occur when one agent's decisions affect others (beyond changing prices)
- Externalities lead to inefficiency because only the private (not external) effects of decision are considered
- Abatement of pollution is expensive, so we must balance costs and benefits to see the optimal level of pollution
- There are various policy approaches to trying to internalize externalities
- The Coase Theorem asserts that private agents may be able to internalize without policy intervention
- The tragedy of the commons is an externality problem

Private, social, and external costs/benefits

- Firms make decisions based on the costs and benefits to them: **private costs and benefits**
- We have assumed that all of the costs and benefits (revenues) from production accrue to firm deciding on output
 - Sometimes there are **external costs or benefits** that accrue to other firms or households
- Social costs/benefits are the sum of private and external
- Socially optimal outcome requires that decisions be based on balancing social MB with MC
 - The firm will not do this if there are externalities that it does not consider
 - Outcome is usually inefficient resource allocation

Social costs and inefficiency: Example

- Perfect competition
 - Firm chooses MR = MC (private)
 - Produces Q_P
- External marginal cost = EMC curve
 - Note that this must be *marginal* cost, not fixed cost
- **Social marginal cost** is SMC = MC + EMC
 - Optimal choice is where MR = MCS, at $Q_S < Q_P$
- Deadweight loss is triangle between MR and SMC over gap in Q

External benefits?

• What if others get benefit from firm's production?

Ρ

- SMB = EMB + MB(P)
- Private choice is Q_P (again)
- Optimal social choice is Q_S, where marginal social benefit = marginal (social) cost
- Deadweight loss is triangle between SMB and SMC over shortfall in *Q*

Applications and implications

- Direct price effects are not externalities: ADM flooding market affected rivals only through price, so not externality
- Externalities can occur in consumption as well as production
 - Costs: Noisy neighbor, smoking near you
 - Benefits: Neighbor with beautiful garden/house
- Firms/consumers who cause external costs produce/consume more than socially optimal mount
- Firms/consumers who cause external benefits produce/consume less than socially optimal amount
- Perfect competition does not lead to efficient resource allocation with externalities: **market failure**

Efficient amount of pollution

- Marginal social cost of pollution (MCP) slopes upward
 - \$/unit of pollution on vertical axis
 - No one notices a little pollution
- Marginal abatement cost (MAC) = marginal benefit of pollution (MBP) slopes downward (in pollution)
 - Use resources or forgo *Q* to abate
 - Easy to abate "low-hanging fruit"
- Optimal pollution: MCP = MBP = MAC
- What would shift curves?

Policy choices

- Emission standard
 - Set max emission allowed at E^*
 - What if some firms have lower abatement costs than others?
 - We'd want the low-cost firms to abate first
- Pigovian taxes
 - Set fee at equilibrium EMC to internalize externality
 - Works with different abatement costs
- Cap and trade: transferable permits to emit pollutants
 - Issue aggregate E^* in total permits
 - Exchange assures efficiency in meeting total emission target
 - Firms with high abatement costs buy from those with low costs

Coase Theorem

- Property right to pollute or to clean environment?
- Either way, one party can negotiate with the other to achieve optimum
 - Right to pollute: Those damaged can pay polluter to stop
 - Right to clean: Polluter can pay damaged to allow pollution
- Need perfect information and costless bargaining
- GLS example: Wisconsin Business School alums did not want school to sell naming rights, paid \$85m to buy no naming for 20 years
- We will do example in conference of resolving a dispute between a factory and fishermen about keeping water clear for fish

Tragedy of the commons

- Case study is example of tragedy of the commons
- Without clear property right, everyone has incentive to overuse common-property resources
 - Fish
 - Underground oil
- Private MC ~ 0
- Social MC > 0
 - EMC > 0 \rightarrow Overconsumption
- M&M experiment?

Review

- Externalities lead to inefficiency because only the private (not external) effects of decision are considered
- Abatement of pollution is expensive so we must balance costs and benefits
- There are several policy approaches to trying to internalize externalities
- The Coase Theorem asserts that private agents may be able to internalize
- The tragedy of the commons is an externality problem

Daily diversion

I learned last week of the passing of legendary Minnesota sports journalist Sid Hartman, who died at age 100 after an amazing 76 years of covering Minnesota sports. One eulogy that I read contained the following quote (perhaps not original with him), which seems to me to be the best "life advice" I can give you and, when I think about it, pretty much how I have lived my life.

"If you love what you do you'll never work a day in your life."

What comes next?

- We continue our discussion of market failures on Wednesday by considering the case of public goods
- Problem Set #6 is due Wednesday
- Friday's class examines innovation and technological change, a favorite topic of mine
- There is a case study for Friday on appropriability and innovation