dplyr
Once data is tidy, you can use dplyr
to further transform your data.
The below documentation covers six fundamental dpylr
functions that should allow you to perform the majority of data wrangling tasks. You can learn about:
filter()
and select()
mutate()
group_by()
and summarize()
arrange()
count()
Throughout these examples, using the palmerpenguins
data, you will see the head()
function used as a way to confirm the effect of the data transformations.
You can also use head()
to get a sense of your dataset, variables, and values:
head(penguins)
## # A tibble: 6 x 8
## species island bill_length_mm bill_depth_mm flipper_length_… body_mass_g sex
## <fct> <fct> <dbl> <dbl> <int> <int> <fct>
## 1 Adelie Torge… 39.1 18.7 181 3750 male
## 2 Adelie Torge… 39.5 17.4 186 3800 fema…
## 3 Adelie Torge… 40.3 18 195 3250 fema…
## 4 Adelie Torge… NA NA NA NA <NA>
## 5 Adelie Torge… 36.7 19.3 193 3450 fema…
## 6 Adelie Torge… 39.3 20.6 190 3650 male
## # … with 1 more variable: year <int>
If you want to learn more about dplyr
, the package's website contains a more extensive overview of the package and its functions. You might also check out the data transformation chapter of the R for Data Science book.