Kara L. Cerveny
Developmental biology, growth control, and the visual system.
David A. Dalton
Plant physiology and ecophysiology, biological nitrogen fixation.
Robert H. Kaplan
Ecology, animal evolution, population biology.
Keith Karoly
Plant evolution, evolution of plant mating systems.
Maryanne McClellan
Cellular biology, reproductive biology, hormone action.
Jay L. Mellies
Bacterial pathogenesis, gene regulation.
Suzy C.P. Renn
Comparative functional genomics of behavior. On sabbatical 2013–14.
Sarah Schaack
Genetics/genomics, transposable elements, and mutation. On sabbatical and leave 2013–14.
Todd Schlenke
Evolutionary genetics, host-parasite interactions.
Janis Shampay
Molecular biology, chromosome structure and function.
Erik Zornik
Neurobiology, neural basis of behavior.
The biology major emphasizes the development of the student’s capacity to use and contribute scientific knowledge. The curriculum includes both conceptual and experimental approaches to studying biology at the molecular, cellular, organismic, population, and species levels. Courses provide students with opportunities to develop an intellectual framework and learn the techniques necessary for answering the questions that interest them. The faculty members, through active professional research programs of their own, offer opportunities for student involvement in biological research. A regular research seminar series adds to the unique research-oriented experience of the Reed biology undergraduate. The synergism between the interests and motivations of Reed students and the rigorous nature of our program, including a research-intensive thesis, enables students to pursue their individual interests and primes them for careers in the life sciences. Reed routinely ranks near the top in the percentage of graduates who earn PhDs and many other biology graduates advance to successful careers in medicine, education, law and advocacy.
The Lewis Kleinholz Biological Laboratories are well-equipped and permit students to engage in mentored and independent research projects during their course of study. Upper-division courses typically include independent reseearch components to foster the development of hypothesis generation, experimental design, and results analysis and interpretation skills. Some courses have field components, and the department supports independent fieldwork. The faculty is intensively engaged in research and in teaching research methodology to students, and some support is available for student independent research during the summer.
Reed students may also broaden their research experience by arrangement with the faculties of the Oregon Health & Science University, the Oregon Graduate Institute of Science and Engineering, the Oregon National Primate Research Center, or other area institutions. In addition, Reed has formal relationships with Malheur Field Station in Oregon’s Great Basin, the Organization for Tropical Studies, the School for Field Studies, the Sea Education Association, and the University of Costa Rica. Students may take courses for credit through these programs or at other field or marine stations.
Through the alternate biology program (described below) the biology department provides students with the flexibility of combining biology with other areas of inquiry, such as economics, political science, and anthropology. Faculty advisers help students plan programs based on their motivations and interests. Alternate and ad hoc joint degree programs can be arranged between the biology department and most other Reed departments.
Requirements for the Major
- Biology 101/102, 470.
- Three semester lecture-laboratory courses in biology, one from each of three clusters: (1) Genes, Genetics and Genomes, Genetics and Gene Regulation; (2) Animal Physiology, Cellular Biology, Developmental Biology, Microbiology, Plant Physiology; (3) Animal Behavior, Population Ecology and Evolution, Vascular Plant Diversity.
- Two additional units in biology, at least one of which must be a full lecture-laboratory course; the other may be an additional full lecture-laboratory course or two half-course combinations, consisting of various combinations. For example, a seminar course (Biology 431) can be combined with any lecture-only course. No more than one 200-level course may be used to meet the fifth unit requirement. Advanced courses may be taken in any sequence as long as course prerequisites have been met.
- Mathematics 111 and either 112, 121, or 141.
- Chemistry 101/102 and 201/202.
Physics is recommended.
The Alternate Program in Biology
The alternate program allows students to integrate a comprehensive grounding in biological science with an understanding of one or more alternate disciplines. Working with their advisers, students can tailor their educational program to prepare them for careers or for graduate and professional programs in environmental studies and conservation, public health, urban planning, environmental law, government, social work, precollege teaching, medical illustration, science journalism, and other fields. The primary academic adviser will be a member of the biology staff, and the student will choose a consulting adviser from the appropriate alternate field. After discussion with both advisers, the student must submit a formal petition to the department with a rationale for the integrated course of study. Except in unusual cases, this petition should be made no later than the end of the sophomore year. Once the petition is approved by the department, the alternate biology major may then be declared.
Requirements for the Alternate Biology Major
- Biology 101/102, 470.
- Three semester lecture-laboratory courses in biology, one from each cluster as described for the biology major.
- One additional full lecture-laboratory course from the above clusters.
- Chemistry 101/102.
- Mathematics 111 taken with either 112, 121, or 141.
- Six to eight semester courses in the nonscience concentration.
Organic chemistry and physics are recommended.
Biology 101 - Introductory Biology
Full course for one semester each, taught by several staff members. The course furnishes an understanding of biological principles and the properties of life. Among topics considered are structure and function of plants and animals, relations of organisms to each other and to their environment, energy relations of organisms, integrative and coordinating mechanisms of organisms, cell biology principles, genetics, molecular biology, reproduction, development and growth, and the evidence for organic evolution. The laboratory deals with the descriptive and experimental aspects of the topics covered in the lectures. Lecture-laboratory.
Biology 102 - Introductory Biology
Full course for one semester each, taught by several staff members. The course furnishes an understanding of biological principles and the properties of life. Among topics considered are structure and function of plants and animals, relations of organisms to each other and to their environment, energy relations of organisms, integrative and coordinating mechanisms of organisms, cell biology principles, genetics, molecular biology, reproduction, development and growth, and the evidence for organic evolution. The laboratory deals with the descriptive and experimental aspects of the topics covered in the lectures. Prerequisite: Biology 101 or consent of the instructor. Lecture-laboratory.
Biology 251 - Plant Communities of the Pacific Northwest
One-half course for one semester. An exploration of the principles underlying the distribution and abundance of plants in the Pacific Northwest. Topics include the structure and basic ecological features of communities, adaptation of organisms to their abiotic and biotic environments, symbiotic relationships, success, endemism, and biogeography. These concepts will be developed to address current environmental problems such as resource extraction, climate change, invasive species, pollution, and loss of biodiversity. Suitable for nonmajors. Prerequisite: Biology 101 and 102 or equivalent. Conference.
Not offered 2013—14.
Biology 263 - Molecular Ecology
One-half course for one semester. Survey of how molecular genetic tools are used to investigate ecological processes in natural populations of plant and animal species. Specific topics will include methods for studying genetic variation at the protein and DNA levels, quantitative predictions from ecological and evolutionary theory, and application of molecular genetic markers to research questions related to selection, patterns of migration, population bottlenecks and founder events, and plant and animal mating systems. Conferences will be student led and based on the primary literature. Prerequisites: Biology 101 and 102. Lecture-conference.
Biology 272 - Reproductive Biology
One-half course for one semester. An introduction to the cellular, endocrine, and evolutionary aspects of reproduction in animals. Lectures will emphasize the cell biology, anatomy, and physiology of vertebrate reproductive systems and present a comparative approach to understanding sex determination. Conferences will highlight contemporary literature on topics such as in vitro fertilization, birth control, hormone imposters, and animal cloning. Prerequisites: Biology 101/102. Lecture-conference.
Biology 322 - Plant Physiology
Full course for one semester. An analysis of cell biology, biochemistry, metabolism, ecophysiology, and development of plants. Lecture topics include water relations, respiration, photosynthesis, nitrogen fixation, mineral nutrition, plant hormones, plant molecular biology, genetic engineering, the role of environmental signals in plant development, and the environmental physiology of Pacific Northwest forests. Lectures will be supplemented with readings in research journals. Laboratory exercises are designed to demonstrate basic research techniques as well as the principles covered in lectures. Students are required to conduct an advanced, independent project. Prerequisites: Biology 101/102 and Chemistry 101/102. Chemistry 201/202 is recommended. Lecture-laboratory.
Biology 332 - Vascular Plant Diversity
Full course for one semester. A survey of vascular plants using evolutionary and ecological principles to interpret patterns of diversity in vascular plant form and function. Topics include plant species, methods of phylogenetic reconstruction, paleobotany, plant reproductive biology, and plant ecological interactions. Laboratory work will include a survey of flowering plant families with an emphasis on learning elements of the flora of the Pacific Northwest. Laboratory projects will demonstrate methods used for establishing evolutionary relationships, assessing genetic structure in natural populations, and identifying adaptive features of plant form and function, and will include independent research in the laboratory or field. Prerequisite: Biology 101/102. Lecture-laboratory.
Biology 342 - Behavioral Genetics
Full course for one semester. We will focus on the genetic basis of behaviors, actions organisms undertake that change their relationship with their environments. The class will be organized into several case studies and will be based on reading and distillation of primary literature and in-class student presentations. Main topics will include reproductive behaviors (courtship, mate choice, pair bonding, parental care, sociality), nutrient acquisition behaviors (search images, learning and memory, competition), and protective behaviors (warning signals, medication, avoidance). We will study these behaviors with an integrated approach that emphasizes not only the ecological and evolutionary forces that maintain the behaviors, but also the neurological and genetic mechanisms that underlie them. Independent laboratory projects will hone skills in experimental design and statistical analysis. Prerequisites: Biology 101 and 102.
Biology 351 - Developmental Biology
Full course for one semester. An analysis of one of the most remarkable events in biology—the formation of a complex, multicellular organism from a single cell. With an emphasis on principles common to many species, this course explores how cellular, molecular, and genetic events contribute to distinct stages of embryogenesis. How are body patterns generated? What are the morphogenetic processes that give rise to specific organ systems? How is cell fate decided? What are the processes that guide tissue growth, regeneration, and differentiation? We will address these and other fundamental questions, discussing primary literature, recreating classic experiments, and performing new investigations. Students will apply the techniques and skills gained during the first part of the course to carry out an independent laboratory project. Prerequisite: Biology 101 and 102, and Chemistry 101 and 102. A course in genetics or cell biology is strongly recommended. Lecture-laboratory.
Biology 356 - Genetics and Gene Regulation
Full course for one semester. The molecular biology of eukaryotes, particularly as it relates to the control of gene expression. Genome organization, packaging and perpetuation, and mechanisms of gene regulation will be treated in depth, with the focus on experimental approaches and what they reveal about the conversion of genotype to phenotype. The laboratory will emphasize molecular approaches to analysis of genomes and gene expression. Prerequisites: Biology 101/102 and Chemistry 101/102. Chemistry 201/202 is recommended. Lecture-laboratory.
Biology 358 - Microbiology
Full course for one semester. The biology of microorganisms, including structure and function of the prokaryotic cell, metabolism, genetics interactions with host organisms, and cell-to-cell communication. Course will emphasize current areas of active research using the primary literature to illustrate key concepts discussed in lecture. Laboratory exercises emphasize interactions of bacteria with their environment and with host organisms, using classical and molecular genetic techniques to address biological problems. An advanced independent research project is required. Prerequisites: Biology 101/102, Chemistry 101/102. Lecture-laboratory.
Biology 363 - Genes, Genetics, and Genomes
Full course for one semester. Overview and exploration of fundamental concepts and processes in genetics including heredity, mitosis, meiosis, DNA replication, transcription, translation, segregation, linkage, recombination, epistasis, selection, migration, drift, and evolution. Topics will also include DNA and RNA structure, coding and noncoding DNA, chromosomes, genome architecture, mechanisms of mutation, horizontal transfer, and genomics. Laboratories will provide the opportunity to investigate genetic questions and concepts using molecular and bioinformatic tools. Prerequisites: Biology 101 and 102, and Chemistry 101 and 102. Lecture-laboratory.
Not offered 2013—14.
Biology 366 - Population Ecology and Evolution
Full course for one semester. The basic concepts of population ecology and population genetics are explored to provide an in-depth understanding of evolutionary biology and conservation biology. Topics include population growth and regulation, demography, interspecific interactions, population genetics, quantitative genetics, evolution of phenotypic plasticity, evolution of life histories, and basic molecular evolution. Examples are chosen primarily from the vertebrate literature. Laboratories emphasize the ecology of amphibian development, experimental design, and computer simulation. These skills are then put to use in both field and laboratory independent projects. The course is supplemented by field trips and video presentations. Prerequisite: Biology 101/102. One upper-division biology course is highly recommended. Lecture-laboratory.
Biology 372 - Cellular Biology
Full course for one semester. An in-depth study of the structure-function relationships within eukaryotic cells. The course emphasizes macromolecular organization and compartmentation of cellular activities. Lecture topics include evolution of cells, cellular reproduction, motility, signal transduction, cell-cell interactions, RNA and protein processing, energy transduction, functional specialization, cell death, and cancer. Laboratories investigate models of cellular regulation and incorporate methods that integrate morphological and biochemical techniques. Prerequisites: Biology 101/102 and Chemistry 101/102. Chemistry 201/202 is recommended. Lecture-laboratory.
Biology 381 - Animal Physiology
Full course for one semester. An examination of functional mechanisms as they relate to the unique challenges faced by animals. A comparative analysis will highlight the functional adaptations that support life in diverse, and sometimes extreme, habitats. The nervous and endocrine systems will be emphasized as they play a crucial role in integrating distinct but interdependent processes. Readings from the primary literature will be chosen to demonstrate the multidisciplinary approaches used by researchers to understand physiological mechanisms, and to illustrate the questions being currently addressed by modern physiologists. The laboratory will provide hands-on training in modern techniques that students will use to investigate their own questions in physiology. Prerequisite: Biology 101 and 102 and Chemistry 101 and 102. Chemistry 201 and 202 recommended. Lecture-laboratory.
Biology 431 - Seminar in Biology: Contemporary Topics
One-half course for one semester. An examination of current topics and areas in biology with an emphasis on primary literature. Participants will lead group discussions and/or make oral presentations. Prerequisites: Biology 101/102, two additional units of biology with laboratory, and junior or senior standing. Not all topics offered every year.
Bacterial Pathogenesis. An examination of how bacterial pathogens interact with host organisms in order to cause disease. Topics include adhesion, colonization, invasion, toxins, subversion of host cell signaling events, immune evasion, and bacteria-to-bacteria communication as they pertain to pathogenesis.
Behavioral Genomics. An exploration of current research that pairs genomic techniques and bioinformatics approaches with classic questions in animal behavior. Not offered 2013–14.
Cellular Regulation. A rigorous treatment of eukaryotic cells as complex systems and of basic cellular regulatory mechanisms. Areas of emphasis include cell–cell interactions, cell cycle regulation, and signal transduction.
Chromosome Structure and Function. Investigation of elements needed for chromosome stability, in particular telomeres, using contemporary studies of telomere metabolism, regulation of telomere length, and the role telomeres play in cellular senescence and cancer. Prior coursework in genetics or cell biology is required.
Conservation Biology. Topics include history of biological conservation, population viability analysis, several amphibian-related field trips, and an analysis of current literature discussions of the role that a biologist serves in the conservation movement. Not offered 2013–14.
Developmental Neurobiology. An exploration of our current understanding of how brains and eyes form that focuses on the visual system. With an emphasis on the transition from proliferation towards differentiation, our investigations will focus on size determination, neuronal connectivity, regeneration, and cancer. Examples of developmental diseases will provide context. A course in cellular and/or developmental biology is required.
Ecology and Evolution of Plant-Human Interactions. Ecological and evolutionary contexts of interactions between plants and humans. Potential topics include agricultural ecology, grazing, plant-resource extraction, crop evolution and their diseases/pests, plant breeding, transgenic species, and invasive plants.
Field Biology and Natural History of Amphibians. Evening field trips every other week will be taken to a variety of habitats to study the diversity and natural history of a fascinating group of animals. On alternate weeks students will lead discussions on the evolution of life history strategies in amphibians.
Mobile DNA. The course will focus on reading, discussing, and presenting papers from the primary literature on mobile genetic elements and viruses, including recent discoveries about transposition mechanisms, horizontal transfer, silencing, and domestication. Not offered 2013–14.
Molecular Genetic Analysis of Plant Evolution. An exploration of issues of current controversy and active research in plant evolution, highlighting places where molecular techniques and data are providing new insights for classical problems in plant evolution. Not offered 2013–14.
Neuroethology. Exploration of modern and classic research aimed at understanding the neural basis of behavior. Neuroethologists investigate how the brains of diverse species generate natural behaviors, with the goal of elucidating fundamental principles of brain function. Topics may include animal communication, learning and memory, locomotion, prey capture, and escape behavior.
Origins of Evolutionary Immune Systems. We will discuss primary literature that explores why organisms haven’t evolved optimum immune responses. Major factors to consider include the constant adaptation of parasite virulence strategies, as well as ecological and evolutionary trade-offs between immunity and other components of host fitness.
Plant Biotechnology. An exploration of emerging technologies, especially genetic engineering, that are revolutionizing agriculture and allowing for the production of plants with enhanced qualities. Emphasis will be placed on the molecular and physiological principles involved as well as the ecological risks and benefits.
Biology 470 - Thesis
Full course for one year.
Biology 481 - Special Topics
One-half course for one semester. Independent laboratory or library research on a topic chosen in consultation with the instructor. A final written report is required. Prerequisites: standing as a junior or senior biology major, and approval of instructor, department, and division.